In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Regulation of actin dynamics by phosphoinositides during epithelial closure

    Pickering, Karen

    [Thesis]. Manchester, UK: The University of Manchester; 2013.

    Access to files

    Abstract

    Epithelia act as protective barriers and it is therefore essential that wounded epithelia are rapidly repaired to maintain barrier function. Cells surrounding epithelial wounds become motile following wounding, which involves generating dynamic actin structures that drive closure of the wound. These actin structures include filopodia which are important in the final stage of epithelial closure in which the opposing epithelial edges are joined together. The molecular mechanisms that trigger wound edge cells to become motile are not well understood. Using Drosophila wound healing and the morphogenetic process dorsal closure as models, we find that phosphatidylinositol 3,4,5-triphosphate (PIP3) regulates epithelial closure by promoting the formation of filopodia at epithelial edges. PIP3 accumulates at epithelial edges and genetically depleting PIP3 results in reduced filopodia and defects in epithelial closure. We demonstrate that the GTPase Rac and guanine nucleotide exchange factor Myoblast City function downstream of PIP3 to promote filopodia formation. We also demonstrated that the scaffolding protein Par3/Bazooka and the lipid phosphatase PTEN are responsible for restricting the localisation of PIP3 and consequently the downstream signals to the epithelial leading edge, so acting to determine the location of filopodia formation. This project reveals a novel mechanism by which actin protrusions, required for epithelial closure, are formed in response to epithelial damage. Additionally, we have identified an additional role for PIP3 in regulating the extrusion of cells from epithelial sheets in the Drosophila embryo. This finding implicates PIP3 in the regulation of tissue homoeostasis, and could contribute to our understanding of tumour initiation as unregulated tissue growth can result in the formation of tumours.

    Additional content not available electronically

    A DVD containing the full sequences of images in the thesis. Movies of the zippering and re-epithelialisation studies.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Developmental Biology
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    218
    Abstract:
    Epithelia act as protective barriers and it is therefore essential that wounded epithelia are rapidly repaired to maintain barrier function. Cells surrounding epithelial wounds become motile following wounding, which involves generating dynamic actin structures that drive closure of the wound. These actin structures include filopodia which are important in the final stage of epithelial closure in which the opposing epithelial edges are joined together. The molecular mechanisms that trigger wound edge cells to become motile are not well understood. Using Drosophila wound healing and the morphogenetic process dorsal closure as models, we find that phosphatidylinositol 3,4,5-triphosphate (PIP3) regulates epithelial closure by promoting the formation of filopodia at epithelial edges. PIP3 accumulates at epithelial edges and genetically depleting PIP3 results in reduced filopodia and defects in epithelial closure. We demonstrate that the GTPase Rac and guanine nucleotide exchange factor Myoblast City function downstream of PIP3 to promote filopodia formation. We also demonstrated that the scaffolding protein Par3/Bazooka and the lipid phosphatase PTEN are responsible for restricting the localisation of PIP3 and consequently the downstream signals to the epithelial leading edge, so acting to determine the location of filopodia formation. This project reveals a novel mechanism by which actin protrusions, required for epithelial closure, are formed in response to epithelial damage. Additionally, we have identified an additional role for PIP3 in regulating the extrusion of cells from epithelial sheets in the Drosophila embryo. This finding implicates PIP3 in the regulation of tissue homoeostasis, and could contribute to our understanding of tumour initiation as unregulated tissue growth can result in the formation of tumours.
    Additional digital content not deposited electronically:
    A DVD containing the full sequences of images in the thesis. Movies of the zippering and re-epithelialisation studies.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:214028
    Created by:
    Pickering, Karen
    Created:
    30th November, 2013, 15:13:40
    Last modified by:
    Pickering, Karen
    Last modified:
    20th October, 2014, 15:02:24

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.