In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Genomic analyses of BMP signalling-responsive transcription in Drosophila

Deignan, Lisa

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

Bone Morphogenetic Protein (BMP) signalling is an evolutionary conserved pathway, which functions to regulate numerous developmental processes such as cell fate determination and cellular proliferation. In Drosophila melanogaster, the ortholog of the vertebrate BMP2/4 is Decapentaplegic (Dpp). The most extensively characterised role of Dpp signalling in Drosophila is embryonic Dorsal-Ventral patterning. In this developmental environment, the Dpp morphogen acts as a step gradient to specify different concentration thresholds for target gene activation. The resulting nested domains of target gene expression in the embryo cooperate to induce the formation and subsequent maintenance of a simple extra-embryonic tissue, the amnioserosa. The amnioserosa tissue acts as an ideal model tissue to study Dpp-regulated differentiation. This study aims to identify and validate new targets of Dpp signalling, which are required for determining cell fate and differentiation of the amnioserosa tissue during embryogenesis. Additionally, this study aims to identify new regulators of the core signalling pathway.The work presented here was performed using a two tiered approach to understand in more detail the processes that regulate BMP-responsive transcription and the downstream effects. Firstly, RNA-Sequencing was performed on embryos with ectopic Dpp signalling in the early embryo. BMP-responsive target genes were idenitifed as differentially expressed when compared to control embryos. Expression studies have validated novel Dpp target genes and the list of genes that are regulated by BMP signalling has now been expanded. It can be invoked that these genes are involved in specification and/or mainentance of the amnioserosa tissue. Furthermore, I have uncovered a putative multi-tiered mechanism that exists between the Dpp and EGF signalling pathways to thus ensure correct cell fate specification and fine tuning of the Dpp signal in the Drosophila embryo.To further investigate how BMP signalling mediates such transcriptional regulation, a genome-wide RNAi screen was designed and performed to identify novel regulators of BMP transcription. Analysis of the screen data has identified a putative link between BMP-regulated transcription and transcriptional effectors of the Hippo signalling pathway, Scalloped and Yorkie. The data presented here suggests a co-regulatory requirement of these transcription factors to mediate Smad-dependent transcription.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Developmental Biology
Publication date:
Location:
Manchester, UK
Total pages:
201
Abstract:
Bone Morphogenetic Protein (BMP) signalling is an evolutionary conserved pathway, which functions to regulate numerous developmental processes such as cell fate determination and cellular proliferation. In Drosophila melanogaster, the ortholog of the vertebrate BMP2/4 is Decapentaplegic (Dpp). The most extensively characterised role of Dpp signalling in Drosophila is embryonic Dorsal-Ventral patterning. In this developmental environment, the Dpp morphogen acts as a step gradient to specify different concentration thresholds for target gene activation. The resulting nested domains of target gene expression in the embryo cooperate to induce the formation and subsequent maintenance of a simple extra-embryonic tissue, the amnioserosa. The amnioserosa tissue acts as an ideal model tissue to study Dpp-regulated differentiation. This study aims to identify and validate new targets of Dpp signalling, which are required for determining cell fate and differentiation of the amnioserosa tissue during embryogenesis. Additionally, this study aims to identify new regulators of the core signalling pathway.The work presented here was performed using a two tiered approach to understand in more detail the processes that regulate BMP-responsive transcription and the downstream effects. Firstly, RNA-Sequencing was performed on embryos with ectopic Dpp signalling in the early embryo. BMP-responsive target genes were idenitifed as differentially expressed when compared to control embryos. Expression studies have validated novel Dpp target genes and the list of genes that are regulated by BMP signalling has now been expanded. It can be invoked that these genes are involved in specification and/or mainentance of the amnioserosa tissue. Furthermore, I have uncovered a putative multi-tiered mechanism that exists between the Dpp and EGF signalling pathways to thus ensure correct cell fate specification and fine tuning of the Dpp signal in the Drosophila embryo.To further investigate how BMP signalling mediates such transcriptional regulation, a genome-wide RNAi screen was designed and performed to identify novel regulators of BMP transcription. Analysis of the screen data has identified a putative link between BMP-regulated transcription and transcriptional effectors of the Hippo signalling pathway, Scalloped and Yorkie. The data presented here suggests a co-regulatory requirement of these transcription factors to mediate Smad-dependent transcription.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:217799
Created by:
Deignan, Lisa
Created:
21st January, 2014, 10:48:25
Last modified by:
Deignan, Lisa
Last modified:
9th January, 2019, 09:50:43

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.