In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Design and Development of 3D interlock Weaving Process inclusive of Continuous Bias Yarn Placement

Sharma, Sandeep

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

Woven fabric composite materials manufactured using carbon fibre as reinforcement, offers the highest potential for the development of high-performance structural components especially for aerospace and automotive applications. Use of liquid molding techniques such as vacuum infusion and resin transfer molding, along with near-net shaped dry textile fibre preforms can contribute significantly to mechanical post-treatment free manufacturing such as machining free component. Pre-orientating the dry fibres into a desired near-net shape, with good reproducibility along with integration of the manufacturing process with inspection and quality assurance at minimum cost significantly reduces the cost of the finished component. The design of textile composites requires a systematic approach that integrates micro-structural design, preform fabrication and composite processing to produce load-bearing structural components with desired 3-D fibre orientations and mechanical properties. This research reviews the various techniques used for manufacturing 3-D dry fibre preforms along with their potential to design reinforcement with desired properties, with a special emphasis made on 3-D weaving preforming technology. It presents a novel method and machine to design thick bespoke 3-D angle interlock woven architectures within its yarn handling capability. It has also provided an edge to the newly¯ designed 3-D weaving process by introducing off-axis fibres on top and bottom surface of the preform continuously in a single process. This imparts isotropic properties to the woven composite in order to balance the in-plain properties reduced due to through-the thickness fibres. The newly designed process also demonstrates the concept of introducing variable length of weft yarn across the width of fabric. This helps to achieve tapering in weft direction especially at the preform edges hence, makes the 3-D weaving process more efficient to design near-net shaped preforms. Other feature includes; multiple shed opening system, multi-weft insertion mechanism, application of multiple warp beams and a travelling carriage method for introducing multilayer warp and a use of custom developed multi-eyed heald wire for yarn positioning along through-the-thickness plane. 3-D carbon fibres preforms with varied binder yarn orientation were produced and various principles of designing near-net shapes are also discussed. Interlocked woven preform offers better mechanical properties in terms structural integrity and delamination resistance. The new 3-D weaving process provides substantial cost reduction and great flexibility in designing and manufacturing near-net shaped dry fibre preforms.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
264
Abstract:
Woven fabric composite materials manufactured using carbon fibre as reinforcement, offers the highest potential for the development of high-performance structural components especially for aerospace and automotive applications. Use of liquid molding techniques such as vacuum infusion and resin transfer molding, along with near-net shaped dry textile fibre preforms can contribute significantly to mechanical post-treatment free manufacturing such as machining free component. Pre-orientating the dry fibres into a desired near-net shape, with good reproducibility along with integration of the manufacturing process with inspection and quality assurance at minimum cost significantly reduces the cost of the finished component. The design of textile composites requires a systematic approach that integrates micro-structural design, preform fabrication and composite processing to produce load-bearing structural components with desired 3-D fibre orientations and mechanical properties. This research reviews the various techniques used for manufacturing 3-D dry fibre preforms along with their potential to design reinforcement with desired properties, with a special emphasis made on 3-D weaving preforming technology. It presents a novel method and machine to design thick bespoke 3-D angle interlock woven architectures within its yarn handling capability. It has also provided an edge to the newly¯ designed 3-D weaving process by introducing off-axis fibres on top and bottom surface of the preform continuously in a single process. This imparts isotropic properties to the woven composite in order to balance the in-plain properties reduced due to through-the thickness fibres. The newly designed process also demonstrates the concept of introducing variable length of weft yarn across the width of fabric. This helps to achieve tapering in weft direction especially at the preform edges hence, makes the 3-D weaving process more efficient to design near-net shaped preforms. Other feature includes; multiple shed opening system, multi-weft insertion mechanism, application of multiple warp beams and a travelling carriage method for introducing multilayer warp and a use of custom developed multi-eyed heald wire for yarn positioning along through-the-thickness plane. 3-D carbon fibres preforms with varied binder yarn orientation were produced and various principles of designing near-net shapes are also discussed. Interlocked woven preform offers better mechanical properties in terms structural integrity and delamination resistance. The new 3-D weaving process provides substantial cost reduction and great flexibility in designing and manufacturing near-net shaped dry fibre preforms.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:219380
Created by:
Sharma, Sandeep
Created:
14th February, 2014, 15:52:27
Last modified by:
Sharma, Sandeep
Last modified:
6th March, 2019, 11:34:12

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.