In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

General Blending Models for Mixture Experiments: Design and Analysis

Brown, Liam John

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

It is felt the position of the Scheffé polynomials as the primary, or sometimes sole recourse for practitioners of mixture experiments leads to a lack of enquiry regarding the type of blending behaviour that is used to describe the response and that this could be detrimental to achieving experimental objectives. Consequently, a new class of models and new experimental designs are proposed allowing a more thorough exploration of the experimental region with respect to different blending behaviours, especially those not associated with established models for mixtures, in particular the Scheffé polynomials. The proposed General Blending Models for Mixtures (GBMM) are a powerful tool allowing a broad range of blending behaviour to be described. These include those of the Scheffé polynomials (and its reparameterisations) and Becker's models. The potential benefits to be gained from their application include greater model parsimony and increased interpretability. Through this class of models it is possible for a practitioner to reject the assumptions inherent in choosing to model with the Scheffé polynomials and instead adopt a more open approach, flexible to many different types of behaviour. These models are presented alongside a fitting procedure, implementing a stepwise regression approach to the estimation of partially linear models with multiple nonlinear terms. The new class of models has been used to develop designs which allow the response surface to be explored fully with respect to the range of blending behaviours the GBMM may describe. These designs may additionally be targeted at exploring deviation from the behaviour described by the established models. As such, these designs may be thought to possess an enhanced optimality with respect to these models. They both possess good properties with respect to optimality criterion, but are also designed to be robust against model uncertainty.

Layman's Abstract

It is felt the position of the Scheffé polynomials as the primary, or sometimes sole recourse for practitioners of mixture experiments leads to a lack of enquiry regarding the type of blending behaviour that is used to describe the response and that this could be detrimental to achieving experimental objectives. Consequently, a new class of models and new experimental designs are proposed allowing a more thorough exploration of the experimental region with respect to different blending behaviours, especially those not associated with established models for mixtures, in particular the Scheffé polynomials. The proposed General Blending Models for Mixtures (GBMM) are a powerful tool allowing a broad range of blending behaviour to be described. These include those of the Scheffé polynomials (and its reparameterisations) and Becker's models. The potential benefits to be gained from their application include greater model parsimony and increased interpretability. Through this class of models it is possible for a practitioner to reject the assumptions inherent in choosing to model with the Scheffé polynomials and instead adopt a more open approach, flexible to many different types of behaviour. These models are presented alongside a fitting procedure, implementing a stepwise regression approach to the estimation of partially linear models with multiple nonlinear terms. The new class of models has been used to develop designs which allow the response surface to be explored fully with respect to the range of blending behaviours the GBMM may describe. These designs may additionally be targeted at exploring deviation from the behaviour described by the established models. As such, these designs may be thought to possess an enhanced optimality with respect to these models. They both possess good properties with respect to optimality criterion, but are also designed to be robust against model uncertainty.

Additional content not available electronically

Three data setsCode for four model fitting procedures.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mathematical Sciences
Publication date:
Location:
Manchester, UK
Total pages:
144
Abstract:
It is felt the position of the Scheffé polynomials as the primary, or sometimes sole recourse for practitioners of mixture experiments leads to a lack of enquiry regarding the type of blending behaviour that is used to describe the response and that this could be detrimental to achieving experimental objectives. Consequently, a new class of models and new experimental designs are proposed allowing a more thorough exploration of the experimental region with respect to different blending behaviours, especially those not associated with established models for mixtures, in particular the Scheffé polynomials. The proposed General Blending Models for Mixtures (GBMM) are a powerful tool allowing a broad range of blending behaviour to be described. These include those of the Scheffé polynomials (and its reparameterisations) and Becker's models. The potential benefits to be gained from their application include greater model parsimony and increased interpretability. Through this class of models it is possible for a practitioner to reject the assumptions inherent in choosing to model with the Scheffé polynomials and instead adopt a more open approach, flexible to many different types of behaviour. These models are presented alongside a fitting procedure, implementing a stepwise regression approach to the estimation of partially linear models with multiple nonlinear terms. The new class of models has been used to develop designs which allow the response surface to be explored fully with respect to the range of blending behaviours the GBMM may describe. These designs may additionally be targeted at exploring deviation from the behaviour described by the established models. As such, these designs may be thought to possess an enhanced optimality with respect to these models. They both possess good properties with respect to optimality criterion, but are also designed to be robust against model uncertainty.
Layman's abstract:
It is felt the position of the Scheffé polynomials as the primary, or sometimes sole recourse for practitioners of mixture experiments leads to a lack of enquiry regarding the type of blending behaviour that is used to describe the response and that this could be detrimental to achieving experimental objectives. Consequently, a new class of models and new experimental designs are proposed allowing a more thorough exploration of the experimental region with respect to different blending behaviours, especially those not associated with established models for mixtures, in particular the Scheffé polynomials. The proposed General Blending Models for Mixtures (GBMM) are a powerful tool allowing a broad range of blending behaviour to be described. These include those of the Scheffé polynomials (and its reparameterisations) and Becker's models. The potential benefits to be gained from their application include greater model parsimony and increased interpretability. Through this class of models it is possible for a practitioner to reject the assumptions inherent in choosing to model with the Scheffé polynomials and instead adopt a more open approach, flexible to many different types of behaviour. These models are presented alongside a fitting procedure, implementing a stepwise regression approach to the estimation of partially linear models with multiple nonlinear terms. The new class of models has been used to develop designs which allow the response surface to be explored fully with respect to the range of blending behaviours the GBMM may describe. These designs may additionally be targeted at exploring deviation from the behaviour described by the established models. As such, these designs may be thought to possess an enhanced optimality with respect to these models. They both possess good properties with respect to optimality criterion, but are also designed to be robust against model uncertainty.
Additional digital content not deposited electronically:
Three data setsCode for four model fitting procedures.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:222351
Created by:
Brown, Liam
Created:
28th March, 2014, 17:33:07
Last modified by:
Brown, Liam
Last modified:
31st March, 2016, 09:22:55

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.