In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    The role of neuronal integrin-mediated adhesions in sensing biochemical and mechanical properties of the extracellular environment

    Wang, De-Yao

    [Thesis]. Manchester, UK: The University of Manchester; 2015.

    Access to files

    Abstract

    In fibroblasts integrin receptors are the primary adhesion receptors and act as the “sensory organs” of cells to sense external signals. My aim was to understand how integrins, together with the adhesion-associated plaque proteins Talin and Vinculin, regulate sensing of extracellular biochemical and mechanical stimuli in neurons. A first set of experiments served to characterise the sensing behaviour of CNS-derived primary cells and cell lines on different extracellular matrix (ECM). Integrin antibodies helped to characterise their adhesion receptor profiles and showed that specific integrin family members were involved in adhesion and axon/neurite outgrowth when plated on ECM proteins of laminin (LN), fibronectin, and collagen. Data showed that integrin-ECM interactions affected axon/neurite outgrowth and pathfinding. Presentation of LN promoted axon/neurite outgrowth and furthermore, presenting it in stripes dramatically enhanced outgrowth speeds showing that not only ECM but how it is presented directs growth. In a further set of experiments I established procedures that enabled me to determine the impact of mechanosensing in axon/neurite outgrowth. The established methodology helped to define point contact areas at the base of filopodia as sites of traction force exertion. Growth cones exerted dynamic stresses of around 10-30 Pa. To examine whether and how growth cones sense mechanical differences in their surrounding environment axon/neurite outgrowth was tracked when cells were plated on polyacrylamide. Data showed that axon/neurite outgrowth lengths and speeds were significantly longer and faster, respectively, on soft (0.4 kPa) than on stiff (8 kPa) substrates. Interestingly, the depletion of vinculin in neurons blocked the ability of growth cones to determine between soft and stiff substrates. Altogether, the interdisciplinary approach in this study helped to gain new insight into how neurons sense biochemical and mechanical properties of the ECM.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosphy
    Degree programme:
    PhD Cell Matrix Research
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    152
    Abstract:
    In fibroblasts integrin receptors are the primary adhesion receptors and act as the “sensory organs” of cells to sense external signals. My aim was to understand how integrins, together with the adhesion-associated plaque proteins Talin and Vinculin, regulate sensing of extracellular biochemical and mechanical stimuli in neurons. A first set of experiments served to characterise the sensing behaviour of CNS-derived primary cells and cell lines on different extracellular matrix (ECM). Integrin antibodies helped to characterise their adhesion receptor profiles and showed that specific integrin family members were involved in adhesion and axon/neurite outgrowth when plated on ECM proteins of laminin (LN), fibronectin, and collagen. Data showed that integrin-ECM interactions affected axon/neurite outgrowth and pathfinding. Presentation of LN promoted axon/neurite outgrowth and furthermore, presenting it in stripes dramatically enhanced outgrowth speeds showing that not only ECM but how it is presented directs growth. In a further set of experiments I established procedures that enabled me to determine the impact of mechanosensing in axon/neurite outgrowth. The established methodology helped to define point contact areas at the base of filopodia as sites of traction force exertion. Growth cones exerted dynamic stresses of around 10-30 Pa. To examine whether and how growth cones sense mechanical differences in their surrounding environment axon/neurite outgrowth was tracked when cells were plated on polyacrylamide. Data showed that axon/neurite outgrowth lengths and speeds were significantly longer and faster, respectively, on soft (0.4 kPa) than on stiff (8 kPa) substrates. Interestingly, the depletion of vinculin in neurons blocked the ability of growth cones to determine between soft and stiff substrates. Altogether, the interdisciplinary approach in this study helped to gain new insight into how neurons sense biochemical and mechanical properties of the ECM.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:259643
    Created by:
    Wang, De-Yao
    Created:
    17th February, 2015, 01:42:56
    Last modified by:
    Wang, De-Yao
    Last modified:
    2nd March, 2020, 11:03:41

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.