In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Radiation resistance of novel polymeric encapsulants

Barr, Logan

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

The generation of nuclear energy leads to the generation of contaminated, radioactive wastes. The current strategy in the UK is to dispose of high and intermediate level wastes to a geological disposal facility with no possibility for retrieval. The waste is contained in an encapsulation matrix, which is usually cement, however cement is unsuitable for certain waste types, for which epoxy resins have been proposed as an alternative. The radiation resistance of two candidate epoxy/amine resin formulations under repository conditions were tested with regards to the degradation of the backbone structure and the release of potential organic ligands from the polymer. The difference in the polymers was the choice of amine curing agent. Analysis of the polymer by infra-red spectroscopy and nuclear magnetic resonance spectroscopy revealed that the carbon nitrogen bonds are the most susceptible to radiation damage, regardless of the atmospheric and aqueous environment. The presence of an aqueous phase greatly reduces the availability of oxygen and reduces the rate of degradation when irradiated under an atmosphere of air. The properties of the aqueous phase has little effect on the degradation of the polymer. Thermal analysis revealed that the effects of the environment are limited to a thin surface layer of the polymer. Leachate analysis revealed that both organic and nitrogen containing compounds are leached from the polymer when irradiated in pure water. Under repository conditions however very little carbon and nitrogen is observed, suggesting that the calcium hydroxide present in repositories is capable of removing the leached species from solution. The generation of nitrate ions from air radiolysis over water is suppressed in the presence of the polymers, suggesting that nitrate is removed from solution by leached species or reaction with the polymer.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
295
Abstract:
The generation of nuclear energy leads to the generation of contaminated, radioactive wastes. The current strategy in the UK is to dispose of high and intermediate level wastes to a geological disposal facility with no possibility for retrieval. The waste is contained in an encapsulation matrix, which is usually cement, however cement is unsuitable for certain waste types, for which epoxy resins have been proposed as an alternative. The radiation resistance of two candidate epoxy/amine resin formulations under repository conditions were tested with regards to the degradation of the backbone structure and the release of potential organic ligands from the polymer. The difference in the polymers was the choice of amine curing agent. Analysis of the polymer by infra-red spectroscopy and nuclear magnetic resonance spectroscopy revealed that the carbon nitrogen bonds are the most susceptible to radiation damage, regardless of the atmospheric and aqueous environment. The presence of an aqueous phase greatly reduces the availability of oxygen and reduces the rate of degradation when irradiated under an atmosphere of air. The properties of the aqueous phase has little effect on the degradation of the polymer. Thermal analysis revealed that the effects of the environment are limited to a thin surface layer of the polymer. Leachate analysis revealed that both organic and nitrogen containing compounds are leached from the polymer when irradiated in pure water. Under repository conditions however very little carbon and nitrogen is observed, suggesting that the calcium hydroxide present in repositories is capable of removing the leached species from solution. The generation of nitrate ions from air radiolysis over water is suppressed in the presence of the polymers, suggesting that nitrate is removed from solution by leached species or reaction with the polymer.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:264000
Created by:
Barr, Logan
Created:
6th May, 2015, 15:27:31
Last modified by:
Barr, Logan
Last modified:
9th September, 2016, 12:56:22

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.