In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

DESIGNING IONIC-COMPLEMENTARY HYDROGELS FOR BONE TISSUE REPAIR

Castillo Diaz, Luis Alberto

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

In recent years, the degradation and subsequent loss of tissues is an issue that has affected people worldwide. Although there are treatments addressing the degradation of tissues, such treatments involve complicated and expensive procedures, where full tissue regeneration is not achieved. For these reasons, in recent years, tissue engineering has developed cutting-edge biomaterials capable of inducing effective tissue regeneration both under cellular or acellular conditions. Peptide hydrogels are versatile biomaterials composed of the basic components of life amino acids, which act as building blocks to form hierarchical structures, which subsequently go on to form well-defined scaffolds. Biomaterials have been widely used for the culture of mammalian cells, tissue engineering, regenerative medicine, drug delivery, etc. This is thanks to their capability of providing a three-dimensional architecture to cells, which mimics the natural architecture of the extracellular matrix (ECM). Peptide- based hydrogels can be easily functionalised with active biological cues, which can direct the cellular response. It has been shown that the ionic-complementary FEFEFKFK hydrogel, succeeded to support the culture of mammalian cells such as bovine chondrocytes. In this work, we used the same FEFEFKFK hydrogel to investigate the capability of this hydrogel to support the three-dimensional culture of both human osteoblasts (hOBs), and human mesenchymal stem cells (hMSCs) for bone regeneration applications. To achieve this goal, hOBs were cultured within both FEFEFKFK (non-functionalised) and RGD-FEFEFKFK (functionalised) gels. Then the suitability of the FEFEFKFK gels to induce cellular proliferation, synthesis of bone ECM and mineralisation was explored. In addition, taking advantage of the inherent plasticity of hMSCs, we also investigated the capability of the FEFEFKFK gel to foster the osteogenic differentiation of hMSCs, and subsequently to induce bone mineralisation in 3-D under osteogenic stimulation. Based on the results obtained in this work, the FEFEFKFK gel arises as a promising biomaterial for both bone and dental tissue regeneration applications.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemical Engineering & Analytical Science
Publication date:
Location:
Manchester, UK
Total pages:
145
Abstract:
In recent years, the degradation and subsequent loss of tissues is an issue that has affected people worldwide. Although there are treatments addressing the degradation of tissues, such treatments involve complicated and expensive procedures, where full tissue regeneration is not achieved. For these reasons, in recent years, tissue engineering has developed cutting-edge biomaterials capable of inducing effective tissue regeneration both under cellular or acellular conditions. Peptide hydrogels are versatile biomaterials composed of the basic components of life amino acids, which act as building blocks to form hierarchical structures, which subsequently go on to form well-defined scaffolds. Biomaterials have been widely used for the culture of mammalian cells, tissue engineering, regenerative medicine, drug delivery, etc. This is thanks to their capability of providing a three-dimensional architecture to cells, which mimics the natural architecture of the extracellular matrix (ECM). Peptide- based hydrogels can be easily functionalised with active biological cues, which can direct the cellular response. It has been shown that the ionic-complementary FEFEFKFK hydrogel, succeeded to support the culture of mammalian cells such as bovine chondrocytes. In this work, we used the same FEFEFKFK hydrogel to investigate the capability of this hydrogel to support the three-dimensional culture of both human osteoblasts (hOBs), and human mesenchymal stem cells (hMSCs) for bone regeneration applications. To achieve this goal, hOBs were cultured within both FEFEFKFK (non-functionalised) and RGD-FEFEFKFK (functionalised) gels. Then the suitability of the FEFEFKFK gels to induce cellular proliferation, synthesis of bone ECM and mineralisation was explored. In addition, taking advantage of the inherent plasticity of hMSCs, we also investigated the capability of the FEFEFKFK gel to foster the osteogenic differentiation of hMSCs, and subsequently to induce bone mineralisation in 3-D under osteogenic stimulation. Based on the results obtained in this work, the FEFEFKFK gel arises as a promising biomaterial for both bone and dental tissue regeneration applications.
Thesis main supervisor(s):
Funder(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:268724
Created by:
Castillo Diaz, Luis
Created:
17th July, 2015, 10:12:46
Last modified by:
Castillo Diaz, Luis
Last modified:
9th September, 2016, 13:03:26

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.