In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Modelling and Characterisation of Losses in Nanocrystalline Cores

Wang, Yiren

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

Increasing the power density of the DC-DC converters requires the size and weight of the magnetic components, such as inductors and transformers, to be reduced. In this thesis, the losses in nanocrystalline inductor cores are characterised and analysed, including the traditional core loss and the gap loss caused by the air gap fringing flux. The loss calculations will form a basis for the design and optimisation of high power inductors for DC-DC converters for EV applications. This thesis first characterises experimentally the core losses in four nanocrystalline cores over a range of operating conditions that are representative of those encontered in typical high power converter applications, including non-sinusoidal waveforms and DC bias conditions. The core losses are assessed by the measured B-H loops and are characterised as a function of DC flux density, showing that for a fixed AC induction level, the losses can vary by almost an order of magnitude as the DC bias increases and the duty ratio moves away from 0.5. The results provide a more complete picture of the core loss variations with both DC and AC magnetisations than is available in manufactures’ data sheets. An electromagnetic finite element (FE) model is used to examine the gap loss that occurs in finely laminated nanocrystalline cores under high frequency operation. The loss is significant in the design example, contributing to almost half of the total inductor loss, and the gap loss is highly concentrated in the region of the air gap. The dependence of the gap loss on key inductor design parameters and operating condtions is also explored. An empirical equation is derived to provide a design-oriented basis for estimating gap losses.Thermal finite element analysis is used to estimate the temperature rise and identify the hot spot in a nanocrystalline inductor encapsulated in an alumimium case. The temperature distribution in the core largely corresponds to the non-uniform distribution of the gap loss. The thermal FEA can also be used to evaluate different thermal management methods to optimise the design for a more compact component.The FE modelling of gap loss and the thermal predictions are validated experimentally on a foil-wound Finemet inductor, showing good agreement between the predictions and measurements under various operating conditions.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
200
Abstract:
Increasing the power density of the DC-DC converters requires the size and weight of the magnetic components, such as inductors and transformers, to be reduced. In this thesis, the losses in nanocrystalline inductor cores are characterised and analysed, including the traditional core loss and the gap loss caused by the air gap fringing flux. The loss calculations will form a basis for the design and optimisation of high power inductors for DC-DC converters for EV applications. This thesis first characterises experimentally the core losses in four nanocrystalline cores over a range of operating conditions that are representative of those encontered in typical high power converter applications, including non-sinusoidal waveforms and DC bias conditions. The core losses are assessed by the measured B-H loops and are characterised as a function of DC flux density, showing that for a fixed AC induction level, the losses can vary by almost an order of magnitude as the DC bias increases and the duty ratio moves away from 0.5. The results provide a more complete picture of the core loss variations with both DC and AC magnetisations than is available in manufactures’ data sheets. An electromagnetic finite element (FE) model is used to examine the gap loss that occurs in finely laminated nanocrystalline cores under high frequency operation. The loss is significant in the design example, contributing to almost half of the total inductor loss, and the gap loss is highly concentrated in the region of the air gap. The dependence of the gap loss on key inductor design parameters and operating condtions is also explored. An empirical equation is derived to provide a design-oriented basis for estimating gap losses.Thermal finite element analysis is used to estimate the temperature rise and identify the hot spot in a nanocrystalline inductor encapsulated in an alumimium case. The temperature distribution in the core largely corresponds to the non-uniform distribution of the gap loss. The thermal FEA can also be used to evaluate different thermal management methods to optimise the design for a more compact component.The FE modelling of gap loss and the thermal predictions are validated experimentally on a foil-wound Finemet inductor, showing good agreement between the predictions and measurements under various operating conditions.
Additional digital content not deposited electronically:
None
Non-digital content not deposited electronically:
None
Thesis main supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:295557
Created by:
Wang, Yiren
Created:
20th January, 2016, 14:52:46
Last modified by:
Wang, Yiren
Last modified:
28th November, 2017, 08:08:46

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.