In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      A multilevel approach to define the hierarchical organisation of extracellular matrix microfibrils

      Godwin, Alan

      [Thesis]. Manchester, UK: The University of Manchester; 2016.

      Access to files

      Abstract

      Extracellular matrix (ECM) microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. The focus of this PhD thesis is the study of two microfibrillar assemblies, fibrillin-1 and collagen VI. Fibrillin is a large ECM glycoprotein which facilitates the deposition of elastin in elastic tissues such aorta, skin and lung and sequesters growth factors in the matrix. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the ECM allowing for the transduction of biochemical and mechanical signals. The structures of some individual domains and short fragments of both fibrillin and collagen VI have been solved, but it is not fully understood how they are arranged into microfibrils and how these microfibrils are arranged into tissues. Therefore the aim of this project has been to determine the hierarchical organisation of fibrillin and collagen VI across multiple length scales. The nanoscale structure of the fibrillin microfibril was determined using negative stain TEM and single particle reconstruction. Microfibrils had a hollow tube-like structure with well-defined bead, arm, interbead and shoulder regions. To overcome flexibility observed in the microfibril, separate sub-models of the different fibrillin regions were modelled. The bead region had a complex double layered structure with an interwoven core and ring structures. The arm region had four separate densities which are potentially formed from dimers of fibrillin molecules. Serial block face scanning electron microscopy (SBF-SEM) and electron tomography allowed for the in situ 3D imaging of individual fibrillin microfibrils in ciliary zonule tissue. Microfibrils in ciliary zonule fibres were held together by cross bridges between microfibrils. These ciliary zonule fibres were then organised into larger fascicle-like structures which were stabilised by circumferentially arranged ciliary zonule fibres. The frozen hydrated structure of the collagen VI half-bead was reconstructed using cryo-TEM. The half-bead region had a compact hollow head, and flexible tail regions, the tail regions were linked together by the collagenous interbead region. SBF-SEM and electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM had a meshwork-like organisation formed from globular densities ~30 nm in diameter. Together a combinatorial approach to image ECM microfibrils from the sub-molecular level to intact tissue structures spanning nanometre to millimetre length scales is presented. This provides a better understanding of how fibrillin and collagen VI microfibrils are organised in tissues.

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Biochemistry 3yr (CMB)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      182
      Abstract:
      Extracellular matrix (ECM) microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. The focus of this PhD thesis is the study of two microfibrillar assemblies, fibrillin-1 and collagen VI. Fibrillin is a large ECM glycoprotein which facilitates the deposition of elastin in elastic tissues such aorta, skin and lung and sequesters growth factors in the matrix. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the ECM allowing for the transduction of biochemical and mechanical signals. The structures of some individual domains and short fragments of both fibrillin and collagen VI have been solved, but it is not fully understood how they are arranged into microfibrils and how these microfibrils are arranged into tissues. Therefore the aim of this project has been to determine the hierarchical organisation of fibrillin and collagen VI across multiple length scales. The nanoscale structure of the fibrillin microfibril was determined using negative stain TEM and single particle reconstruction. Microfibrils had a hollow tube-like structure with well-defined bead, arm, interbead and shoulder regions. To overcome flexibility observed in the microfibril, separate sub-models of the different fibrillin regions were modelled. The bead region had a complex double layered structure with an interwoven core and ring structures. The arm region had four separate densities which are potentially formed from dimers of fibrillin molecules. Serial block face scanning electron microscopy (SBF-SEM) and electron tomography allowed for the in situ 3D imaging of individual fibrillin microfibrils in ciliary zonule tissue. Microfibrils in ciliary zonule fibres were held together by cross bridges between microfibrils. These ciliary zonule fibres were then organised into larger fascicle-like structures which were stabilised by circumferentially arranged ciliary zonule fibres. The frozen hydrated structure of the collagen VI half-bead was reconstructed using cryo-TEM. The half-bead region had a compact hollow head, and flexible tail regions, the tail regions were linked together by the collagenous interbead region. SBF-SEM and electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM had a meshwork-like organisation formed from globular densities ~30 nm in diameter. Together a combinatorial approach to image ECM microfibrils from the sub-molecular level to intact tissue structures spanning nanometre to millimetre length scales is presented. This provides a better understanding of how fibrillin and collagen VI microfibrils are organised in tissues.
      Thesis main supervisor(s):
      Funder(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:304942
        Created by:
        Godwin, Alan
        Created:
        30th September, 2016, 13:17:09
        Last modified by:
        Godwin, Alan
        Last modified:
        9th January, 2019, 10:51:35

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.