In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Use of Multistaic Radar in Reducing the Impact of Wind Farm on Civilian Radar System

Al Mashhadani, Waleed

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

The effects of wind farm installation on the conventional monostatic radar operation have been investigated in previous studies. The interference on radar operation is due to the complex scattering characteristics from the wind turbine structure. This research considers alternative approach for studying and potentially mitigating these negative impacts by adapting the multistatic radar system technique. This radar principle is well known and it is attracting research interest recently, but has not been applied in modelling the wind farm interference on multistatic radar detection and tracking of multiple targets. The research proposes two areas of novelties. The first area includes the simulation tool development of multistatic radar operation near a wind farm environment. The second area includes the adaptation of Range-Only target detection approach based on mathematical and/or statistical methods for target detection and tracking, such as Interval Analysis and Particle Filter. These methods have not been applied against such complex detection scenario of large number of targets within a wind farm environment.Range-Only target detection approach is often considered to achieve flexibility in design and reduction in cost and complexity of the radar system. However, this approach may require advanced signal processing techniques to effectively associate measurements from multiple sensors to estimate targets positions. This issue proved to be more challenging for the complex detection environment of a wind farm due to the increase in number of measurements from the complex radar scattering of each turbine.The research conducts a comparison between Interval Analysis and Particle Filter. The comparison is based on the performance of the two methods according to three aspects; number of real targets detected, number of ghost targets detected and the accuracy of the estimated detections. Different detection scenarios are considered for this comparison, such as single target detection, wind farm detection, and ultimately multiple targets at various elevations within a wind farm environment.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
184
Abstract:
The effects of wind farm installation on the conventional monostatic radar operation have been investigated in previous studies. The interference on radar operation is due to the complex scattering characteristics from the wind turbine structure. This research considers alternative approach for studying and potentially mitigating these negative impacts by adapting the multistatic radar system technique. This radar principle is well known and it is attracting research interest recently, but has not been applied in modelling the wind farm interference on multistatic radar detection and tracking of multiple targets. The research proposes two areas of novelties. The first area includes the simulation tool development of multistatic radar operation near a wind farm environment. The second area includes the adaptation of Range-Only target detection approach based on mathematical and/or statistical methods for target detection and tracking, such as Interval Analysis and Particle Filter. These methods have not been applied against such complex detection scenario of large number of targets within a wind farm environment.Range-Only target detection approach is often considered to achieve flexibility in design and reduction in cost and complexity of the radar system. However, this approach may require advanced signal processing techniques to effectively associate measurements from multiple sensors to estimate targets positions. This issue proved to be more challenging for the complex detection environment of a wind farm due to the increase in number of measurements from the complex radar scattering of each turbine.The research conducts a comparison between Interval Analysis and Particle Filter. The comparison is based on the performance of the two methods according to three aspects; number of real targets detected, number of ghost targets detected and the accuracy of the estimated detections. Different detection scenarios are considered for this comparison, such as single target detection, wind farm detection, and ultimately multiple targets at various elevations within a wind farm environment.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:306930
Created by:
Al Mashhadani, Waleed
Created:
16th January, 2017, 21:24:55
Last modified by:
Al Mashhadani, Waleed
Last modified:
3rd November, 2017, 11:17:54

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.