In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Corrosion inhibition: a spectroscopic study

Torres Molina, Maria

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

Although many organic compounds are known to inhibit corrosion, in most cases it remains unknown how they specifically interact with a surface and how they decrease the corrosion rate. This lack of mechanistic knowledge currently makes the design and choice of new active compounds a case of trial and error. Understanding these organic molecule-metal surface interactions could lead to the design of new corrosion inhibitors for the oil and gas industry.In this project it is intended to move the understanding of corrosion inhibition and other surface phenomena from empirical observation towards a mechanistic understanding. Using a combination of surface sensitive techniques such as vibrational sum frequency generation and X-ray photoelectron spectroscopy, and theoretical modelling through the preparation of model complexes of relevant corrosion inhibitors.Two families of corrosion inhibitors have been studied and are presented here. For nitrogen based corrosion inhibitors a combination of theoretical calculations and experimental analysis of vibrational modes of model compounds have proved to be a good method to assist in understanding of surface phenomena.For phosphorus based corrosion inhibitors an extensive study of model compounds has been done. In addition to this, different phosphonic acids and phosphate esters have been studied on a Fe (110) and steel surfaces in ultra high vacuum and in more realistic conditions using near ambient pressures in order to investigate if changes in the environmental conditions lead to a different behaviour. These have been compared to the study of PAE 136, a commercial corrosion inhibitor composed by a mixture of phosphate esters used in the extraction of oil, proving that one of the selected model compounds has a better inhibitive activity in both an ideal and a more realistic system.The results presented in this thesis demonstrate that every corrosion inhibitor needs to be tested in the conditions in which it is going to be used as it is not possible to predict if a given active compound is going to have the same behaviour for different environments.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (48 month)
Publication date:
Location:
Manchester, UK
Total pages:
273
Abstract:
Although many organic compounds are known to inhibit corrosion, in most cases it remains unknown how they specifically interact with a surface and how they decrease the corrosion rate. This lack of mechanistic knowledge currently makes the design and choice of new active compounds a case of trial and error. Understanding these organic molecule-metal surface interactions could lead to the design of new corrosion inhibitors for the oil and gas industry.In this project it is intended to move the understanding of corrosion inhibition and other surface phenomena from empirical observation towards a mechanistic understanding. Using a combination of surface sensitive techniques such as vibrational sum frequency generation and X-ray photoelectron spectroscopy, and theoretical modelling through the preparation of model complexes of relevant corrosion inhibitors.Two families of corrosion inhibitors have been studied and are presented here. For nitrogen based corrosion inhibitors a combination of theoretical calculations and experimental analysis of vibrational modes of model compounds have proved to be a good method to assist in understanding of surface phenomena.For phosphorus based corrosion inhibitors an extensive study of model compounds has been done. In addition to this, different phosphonic acids and phosphate esters have been studied on a Fe (110) and steel surfaces in ultra high vacuum and in more realistic conditions using near ambient pressures in order to investigate if changes in the environmental conditions lead to a different behaviour. These have been compared to the study of PAE 136, a commercial corrosion inhibitor composed by a mixture of phosphate esters used in the extraction of oil, proving that one of the selected model compounds has a better inhibitive activity in both an ideal and a more realistic system.The results presented in this thesis demonstrate that every corrosion inhibitor needs to be tested in the conditions in which it is going to be used as it is not possible to predict if a given active compound is going to have the same behaviour for different environments.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:307972
Created by:
Torres Molina, Maria
Created:
8th March, 2017, 16:44:38
Last modified by:
Torres Molina, Maria
Last modified:
3rd November, 2017, 11:18:21

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.