In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Broadband Vibrational Sum Frequency Spectroscopy (VSFS) of Modified Graphene and Polymeric Thin Films

Holroyd, Chloe Margaret

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

The surface-specific technique of vibrational sum frequency spectroscopy (VSFS) can provide vibrational information about chemical bonds at surfaces and interfaces. Two photons, of visible and infrared frequency, are spatially and temporally overlapped at a surface/interface to produce a photon at the sum frequency (SF) of the two input photons. As well as this process only being allowed in non-centrosymmetric media (i.e. VSFS is surface/interface specific), the SF process is enhanced when the IR beam is resonant with vibrational resonances. Broadband VSFS has been used in this project to study surfaces of two distinct classes of materials, namely graphene and polymers.Firstly, broadband VSFS was used to investigate the heating polymeric thin films using a home-built heated sample cell. The cell was tested using self-assembled monolayers (SAMs) of 1-octadecanethiol (ODT) grown on gold substrates. It was subsequently used to investigate thin films of poly(methyl methacrylate) (PMMA) of four different thicknesses and two different molecular weights that were spin-coated onto gold substrates. It was shown that the monolayers of ODT become disordered upon heating and solidified to incorporate the disorder introduced by the heating process. The PMMA films were also shown to become more disordered as a function of temperature.Secondly, broadband VSFS was used to investigate modified graphene, motivated by the fact that modifications to pristine graphene, be it intentional (i.e. functionalisation) or unintentional (i.e. contamination), cause the properties of graphene to change. This project focused on studying hydrogenated graphene, N-methylbenzamide functionalised graphene and contamination on commercial graphene. A method for calculating the number of hydrogen atoms in a hydrogen island was developed. VSF spectra of CH stretches in N-methylbenzamide functionalised graphene were obtained. Residues on commercially bought graphene were detected using VSFS and RAIRS. These residues were assigned to PMMA that remained on the CVD graphene by the process of transferring the CVD graphene from the copper foil on which it was grown onto the gold substrates.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
248
Abstract:
The surface-specific technique of vibrational sum frequency spectroscopy (VSFS) can provide vibrational information about chemical bonds at surfaces and interfaces. Two photons, of visible and infrared frequency, are spatially and temporally overlapped at a surface/interface to produce a photon at the sum frequency (SF) of the two input photons. As well as this process only being allowed in non-centrosymmetric media (i.e. VSFS is surface/interface specific), the SF process is enhanced when the IR beam is resonant with vibrational resonances. Broadband VSFS has been used in this project to study surfaces of two distinct classes of materials, namely graphene and polymers.Firstly, broadband VSFS was used to investigate the heating polymeric thin films using a home-built heated sample cell. The cell was tested using self-assembled monolayers (SAMs) of 1-octadecanethiol (ODT) grown on gold substrates. It was subsequently used to investigate thin films of poly(methyl methacrylate) (PMMA) of four different thicknesses and two different molecular weights that were spin-coated onto gold substrates. It was shown that the monolayers of ODT become disordered upon heating and solidified to incorporate the disorder introduced by the heating process. The PMMA films were also shown to become more disordered as a function of temperature.Secondly, broadband VSFS was used to investigate modified graphene, motivated by the fact that modifications to pristine graphene, be it intentional (i.e. functionalisation) or unintentional (i.e. contamination), cause the properties of graphene to change. This project focused on studying hydrogenated graphene, N-methylbenzamide functionalised graphene and contamination on commercial graphene. A method for calculating the number of hydrogen atoms in a hydrogen island was developed. VSF spectra of CH stretches in N-methylbenzamide functionalised graphene were obtained. Residues on commercially bought graphene were detected using VSFS and RAIRS. These residues were assigned to PMMA that remained on the CVD graphene by the process of transferring the CVD graphene from the copper foil on which it was grown onto the gold substrates.
Additional digital content not deposited electronically:
N/A
Non-digital content not deposited electronically:
N/A
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:308575
Created by:
Holroyd, Chloe
Created:
4th April, 2017, 17:42:32
Last modified by:
Holroyd, Chloe
Last modified:
10th August, 2017, 11:42:10

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.