In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Anion-Binding Catalysis with Molecular Knots and Machines

Jaramillo García, Javier

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

Over billions of years Nature has mastered the use of molecular factories that are not only able to perform chemical transformations with extreme efficiency, but are also controlled in a very detailed and specific way using a myard of molecular signalling systems. This amazing level of control over catalytic reactions has been our inspiration to design artificial catalytic systems that are able to be controlled using an external stimulus. These systems have been employed for anion-binding catalysed reactions and we have achieved a high level of control over the rate of the reactions, paving the way for new exciting processes. Chapter One contains an introduction to the most relevant concepts involved in the development of molecules able to interact with anions and reviews the current state-of-the-art in the emerging field of Anion-Binding Catalysis. Chapter Two details the development of a fully organic Pentafoil Knot, its reversible metalation and demetalation, its use for anion-binding catalysis and the allosteric regulation of catalysis with the in-situ generation of trityl carbocation as a catalyst. Chapter Three describes the use of Fe-metalated Pentafoil Knot in the catalytic Ritter reaction of activated halo-benzyl and –benzhydryl compounds for the generation of corresponding deuterated acetamides. Chapter Four illustrates the use of a [2]rotaxane-based dual switchable catalyst for total control over the rate of various anion-binding catalysed reactions and the development of a tandem process in which the two catalytic sites of the rotaxane system are employed sequentially.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
249
Abstract:
Over billions of years Nature has mastered the use of molecular factories that are not only able to perform chemical transformations with extreme efficiency, but are also controlled in a very detailed and specific way using a myard of molecular signalling systems. This amazing level of control over catalytic reactions has been our inspiration to design artificial catalytic systems that are able to be controlled using an external stimulus. These systems have been employed for anion-binding catalysed reactions and we have achieved a high level of control over the rate of the reactions, paving the way for new exciting processes. Chapter One contains an introduction to the most relevant concepts involved in the development of molecules able to interact with anions and reviews the current state-of-the-art in the emerging field of Anion-Binding Catalysis. Chapter Two details the development of a fully organic Pentafoil Knot, its reversible metalation and demetalation, its use for anion-binding catalysis and the allosteric regulation of catalysis with the in-situ generation of trityl carbocation as a catalyst. Chapter Three describes the use of Fe-metalated Pentafoil Knot in the catalytic Ritter reaction of activated halo-benzyl and –benzhydryl compounds for the generation of corresponding deuterated acetamides. Chapter Four illustrates the use of a [2]rotaxane-based dual switchable catalyst for total control over the rate of various anion-binding catalysed reactions and the development of a tandem process in which the two catalytic sites of the rotaxane system are employed sequentially.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:314146
Created by:
Jaramillo Garcia, Javier
Created:
10th April, 2018, 08:07:59
Last modified by:
Jaramillo Garcia, Javier
Last modified:
1st May, 2019, 11:32:37

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.