In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Reverse Engineering Encapsulated components from Legacy Code

Arshad, Rehman

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

Component-based development is an approach that revolves around the construction of systems form pre-built modular units (components). If legacy code can be reverse engineered to extract components, the extracted components can provide architectural re-usability across multiple systems of the same domain. Current component directed reverse engineering approaches are based on component models that belong to architecture description languages (ADLs). ADL-based components cannot be reused without configurational changes at code level and binding every required and provided service. Moreover, these component models neither support code-independent composition after extraction of components nor the re-deposition of a composed configuration of components for future reuse. This thesis presents a reverse engineering approach that extracts components and addresses the limitations of current approaches, together with a tool called RX-MAN. Unlike ADL-based approaches, the presented approach is based on an encapsulated component model called X-MAN. X-MAN components are encapsulated because computation cannot go outside of a component. X-MAN components cannot interact directly but only exogenously (composition is defined outside of a component). Our approach offers code-independent composition after extracting components and does not need binding of all the services like ADLs. The evaluation of our approach shows that it can facilitate the re-usability of legacy code by providing code-independent composition and re-deposition of composed configurations of components for further reuse and composition.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
228
Abstract:
Component-based development is an approach that revolves around the construction of systems form pre-built modular units (components). If legacy code can be reverse engineered to extract components, the extracted components can provide architectural re-usability across multiple systems of the same domain. Current component directed reverse engineering approaches are based on component models that belong to architecture description languages (ADLs). ADL-based components cannot be reused without configurational changes at code level and binding every required and provided service. Moreover, these component models neither support code-independent composition after extraction of components nor the re-deposition of a composed configuration of components for future reuse. This thesis presents a reverse engineering approach that extracts components and addresses the limitations of current approaches, together with a tool called RX-MAN. Unlike ADL-based approaches, the presented approach is based on an encapsulated component model called X-MAN. X-MAN components are encapsulated because computation cannot go outside of a component. X-MAN components cannot interact directly but only exogenously (composition is defined outside of a component). Our approach offers code-independent composition after extracting components and does not need binding of all the services like ADLs. The evaluation of our approach shows that it can facilitate the re-usability of legacy code by providing code-independent composition and re-deposition of composed configurations of components for further reuse and composition.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:317350
Created by:
Arshad, Rehman
Created:
24th November, 2018, 22:18:56
Last modified by:
Arshad, Rehman
Last modified:
3rd January, 2019, 13:49:00

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.