In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Understanding the regulatory chromatin landscape of oesophageal adenocarcinoma

      Rogerson, Connor John

      [Thesis]. Manchester, UK: The University of Manchester; 2020.

      Access to files

      Abstract

      Oesophageal adenocarcinoma (OAC) is one of the most frequent causes of cancer deaths and yet compared to other common cancers, we know relatively little about the molecular composition of this tumour type. Developmentally, OAC progresses from its precancerous precursor, Barrett's oesophagus (BO). To further our understanding of this cancer we have used open chromatin profiling (ATAC-seq) of normal oesophagus, Barrett's oesophagus and OAC human tissue, and integrated ChIP-seq and RNA-seq of cell-lines to decipher the transcriptional regulatory networks that are operational during OAC development. First by analysing the open chromatin profiles of normal and OAC tissue, we have uncovered an active transcription factor network, which is usually found in primitive intestinal cells during embryonic development, centred on HNF4A and GATA6. By exploring BO ATAC-seq data, we show that this transcription factor network is activated in BO. We also show that HNF4A alone is sufficient to drive chromatin opening and activate a BO-like chromatin signature in normal human oesophageal cells. Second, by focussing on RNA-seq of BO and OAC tissue, we have also identified activation of a cell cycle gene signature during progression from BO to OAC. By integrating ATAC-seq of BO and OAC, we have implicated KLF5 in activating this cell cycle signature. KLF5 binds to cell cycle associated genes specifically in OAC, and patients with high expression of KLF5 target genes have a worse prognosis that those that do not. This thesis has provided a molecular timeline of activation and function of transcription factors, and their target genes, involved in the development of BO and OAC and provided new targets for biomarkers and therapeutics.

      Additional content not available electronically

      Supplementary CD

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Molecular Cancer Studies 4yr (MCF)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      134
      Abstract:
      Oesophageal adenocarcinoma (OAC) is one of the most frequent causes of cancer deaths and yet compared to other common cancers, we know relatively little about the molecular composition of this tumour type. Developmentally, OAC progresses from its precancerous precursor, Barrett's oesophagus (BO). To further our understanding of this cancer we have used open chromatin profiling (ATAC-seq) of normal oesophagus, Barrett's oesophagus and OAC human tissue, and integrated ChIP-seq and RNA-seq of cell-lines to decipher the transcriptional regulatory networks that are operational during OAC development. First by analysing the open chromatin profiles of normal and OAC tissue, we have uncovered an active transcription factor network, which is usually found in primitive intestinal cells during embryonic development, centred on HNF4A and GATA6. By exploring BO ATAC-seq data, we show that this transcription factor network is activated in BO. We also show that HNF4A alone is sufficient to drive chromatin opening and activate a BO-like chromatin signature in normal human oesophageal cells. Second, by focussing on RNA-seq of BO and OAC tissue, we have also identified activation of a cell cycle gene signature during progression from BO to OAC. By integrating ATAC-seq of BO and OAC, we have implicated KLF5 in activating this cell cycle signature. KLF5 binds to cell cycle associated genes specifically in OAC, and patients with high expression of KLF5 target genes have a worse prognosis that those that do not. This thesis has provided a molecular timeline of activation and function of transcription factors, and their target genes, involved in the development of BO and OAC and provided new targets for biomarkers and therapeutics.
      Additional digital content not deposited electronically:
      Supplementary CD
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:323222
        Created by:
        Rogerson, Connor
        Created:
        14th January, 2020, 16:49:25
        Last modified by:
        Rogerson, Connor
        Last modified:
        6th February, 2020, 10:32:03

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.