Skip to navigation | Skip to main content | Skip to footer
Menu Search the University of Manchester siteSearch
Search type

Alternatively, use our A–Z index

Prof John Vickerman (BSc, PhD, DSc, FRSC) - personal details

Contact details

Role: Emeritus Professor




Research Group Website: Surface Analysis Research Centre

Prof. John Vickerman is a pioneer and international leader in the development of surface analysis by secondary ion mass spectrometry (SIMS). Building on an early career focused on basic surface chemistry and catalysis, over the last 30 years his group has made a major contribution to understanding the fundamental phenomenology and developing SIMS as a molecular mass spectrometry with the analytical power to probe chemical complexity at a level that defeats other techniques [1]. Resulting in over 250 papers, 5 books and 50 doctoral theses, this work has contributed to the basic science of the technique, to instrumental developments and to the industrial exploitation of SIMS for applied surface analysis.


Secondary ion mass spectrometry (SIMS) is the mass spectrometry of ionised particles that are emitted when a surface is bombarded by energetic primary particles, usually ions (for example Ar+, Ga+, Cs+ and more recently Aun+, Bin+ and C60+). The emitted (sputtered) secondary particles are electrons; neutrals species atoms or molecules; atomic or cluster ions. The vast majority of sputtered particles are neutrals, but it is the secondary ions that are analysed and detected by a mass spectrometer. It is this process that provides a mass spectrum of a surface to provide detailed chemical analysis of a surface or solid. The process is destructive of surface chemistry. In the late 1960s Benninghoven’s group in Münster developed the technique - static SIMS in which the amount of surface removed is limited to less than 1%. Under these conditions each ion impact samples virgin surface and in theory the ions emitted reflect undamaged chemistry. Until our very recent developments using cluster primary ion beams this was the only way to access molecular information via SIMS.

Research Highlights

Static SIMS spectra DO reflect surface chemical structure. In the period 1976 to 1985 using the first quadrupole and triple quadrupole MS/MS systems the group was unique in demonstrating via systematic studies into the basic surface chemistry of metals, oxides and polymers that the spectra observed reflected the detailed chemistry of the surfaces [2].
FABMS – a crucial contribution. The group developed the fast-atom bombardment beam in 1980 that led to the invention of fast-atom-bombardment mass spectrometry with Mike Barber. For the first time FABMS enabled non-volatile compounds to be analysed easily with a mass spectrometer – a revolutionary advance.