Information regarding our 2023/24 admissions cycle

Our 2023/24 postgraduate taught admissions cycle will open on Monday, 10 October. For most programmes, the application form will not open until this date.

MSc Communications and Signal Processing with Extended Research

Year of entry: 2023

Course unit details:
Antennas and RF Systems

Course unit fact file
Unit code EEEN60121
Credit rating 15
Unit level FHEQ level 7 – master's degree or fourth year of an integrated master's degree
Teaching period(s) Semester 1
Offered by Department of Electrical & Electronic Engineering
Available as a free choice unit? No


Brief Description of the Unit

1. Antenna and Propagation (9 credit)
General introduction to antennas systems and propagation in free space.
Antenna parameters: Antenna gain, beamwidth, bandwidth, efficiency and size.
Polarisation: Polarisation-linear, circular and elliptic, multipath effects.
Antenna Radiation: Near field and far fields radiation and basic antenna measurements.
Antenna types: Multiple antennas forming arrays and array factor. Feed structures.
Antenna modelling: High-frequency methods, FDTD, MoM.
Propagation: Radio wave propagation and electromagnetics.

2. RF Systems (6 credits)
Transmission line theory, Telegrapher’s equations. The Smith Chart, ABCD parameters and S-parameters. VSWR and reflection coefficient. Circuit analysis of lumped RF and distributed microwave components. Analysis of lossless reciprocal and non-reciprocal networks. Unitary condition. Worked examples – simple matching networks quarter-wave and lumped LC. Basics of the Smith Chart.


Unit title Unit code Requirement type Description
Transmissions Lines & Optical Fibres EEEN30036 Pre-Requisite Compulsory


The programme unit aims to:

  • Develop an understanding of the fundamental principles of antenna function and characteristics. 
  • An understanding of the key parameters affecting the propagation of electromagnetic waves in free-space will be developed.
  • Develop awareness and understanding of the available methods used to model antenna systems.
  • Examine the basic analysis techniques for RF and microwave network analysis.
  • Show how Smith Chart is used to analyse a circuit and to undertake some basic matching. 

Learning outcomes

Knowledge and understanding

  • Understanding of the key parameters when addressing the performance of antennas and the theory behind it.
  • Understand the effect of antenna gain, beam width, polarisation and the nearfield & farfield radiation.
  • Develop the knowledge of the main modelling techniques available to model antenna performance.
  • Develop the knowledge of  the measurement procedures and equipments needed for Antennas and RF circuits.
  • Understand transmission line theory, loading and discrete modelling.
  • Understand the application of the Smith Chart.

Intellectual skills

  • The ability to demonstrate knowledge of antennas used in various communication systems and their key performance parameters.
  • Ability to discriminate between antennas on the basis of their electrical performance and their application.
  • Identify the appropriate measurement equipment needed for a particular antenna or RF function test.
  • Understand the fundamentals of using a microwave circuit simulator such as Keysight's ADS and CST Microwave Studio 3-D modelling tool.

Practical skills

  • Develop the ability to use industry standard tools such as Keysight's ADS and CST Microwave Studio for 3D EM modelling.
  • Use engineering understanding to interpret modelling results.

Transferable skills and personal qualities

  • The ability to work within a small group to design and build a project within an allocated time.
  • Appreciation of the engineering and analytical thinking on addressing and resolving practical problems
  • Report writing.

Assessment methods

Method Weight
Written exam 70%
Report 30%

Study hours

Scheduled activity hours
Lectures 24
Practical classes & workshops 12
Tutorials 4
Independent study hours
Independent study 110

Teaching staff

Staff member Role
Robin Sloan Unit coordinator
Laith Danoon Unit coordinator

Return to course details