BSc Mathematics with Finance

Year of entry: 2024

Course unit details:
Principles of Mathematical Modelling

Course unit fact file
Unit code MATH20521
Credit rating 10
Unit level Level 2
Teaching period(s) Semester 1
Available as a free choice unit? No

Overview

The Principles of Mathematical Modelling course is designed to provide students with a core and implementable knowledge of how mathematics can be used at the interdisciplinary interface.

 

Pre/co-requisites

Unit title Unit code Requirement type Description
Introduction to Vector Calculus MATH11411 Pre-Requisite Recommended
ODEs and Applications MATH11422 Pre-Requisite Compulsory
Introduction to Ordinary Differential Equations MATH11412 Pre-Requisite Compulsory

Students should have taken MATH11421 Introduction to ODEs or MATH11422 ODEs and Applications.

MATH11411 Introduction to Vector Calculus is recommended


 

Aims

  • Achieve a broad understanding of the objectives of mathematical modelling within the physical sciences
  • Gain a working knowledge of core techniques behind mathematical modelling
  • Develop a basic ability to quantify certain phenomena associated with the physical sciences.

Learning outcomes

On successful completion of this course unit students will be able to:

1. Make use of the SI units of dimension, and create dimensionless quantities so as to better understand physical phenomenon.
2. Use conservation equations to construct mathematical models of a range of phenomena
3. Non-dimensionalise equations and show how/when small terms can subsequently be neglected from an equation, so as to reduce their complexity.
4. Calculate the stability of 1d and 2d linear systems (and how to reduce a non-linear system down to a linear one).
5. How to communicate scientific concepts/research to a general audience.

Syllabus

Week 1: Introduction to the mathematical modelling.
Weeks 1-3: Introduction to dimensional analysis.
Week 3-6: Introduction to conservation equations.
Weeks 7-10: Introduction to non-dimensionalisation.
Week 11: Introduction to model stability.
Week12: Revision.

Assessment methods

Method Weight
Other 40%
Written exam 60%

40% other assessment, of which 20% is a poster project

Feedback methods

Feedback tutorials will provide an opportunity for students' work to be discussed and provide feedback on their understanding.  Coursework or in-class tests (where applicable) also provide an opportunity for students to receive feedback.  Students can also get feedback on their understanding directly from the lecturer, for example during the lecturer's office hour.

Recommended reading

- Acheson, D. From Calculus to Chaos (Oxford, 1985) -Taylor, A. Mathematical Models in Applied Mechanics (Oxford, 1984) -Howison, S. Practical applied mathematics.

- Sonin, A. The physical basis of dimensional analysis.

Study hours

Scheduled activity hours
Lectures 12
Tutorials 12
Independent study hours
Independent study 76

Teaching staff

Staff member Role
Jitesh Gajjar Unit coordinator

Additional notes

The independent study hours will normally comprise the following. During each week of the taught part of the semester:

  • You will normally have approximately 60-75 minutes of video content. Normally you would spend approximately 2-2.5 hrs per week studying this content independently
  • You will normally have exercise or problem sheets, on which you might spend approximately 1.5hrs per week
  • There may be other tasks assigned to you on Blackboard, for example short quizzes or short-answer formative exercises
  • In some weeks you may be preparing coursework or revising for mid-semester tests


Together with the timetabled classes, you should be spending approximately 6 hours per week on this course unit.


The remaining independent study time comprises revision for and taking the end-of-semester assessment.

Return to course details