- UCAS course code
- FG3C
- UCAS institution code
- M20
Course unit details:
Continuum Mechanics
Unit code | MATH45062 |
---|---|
Credit rating | 15 |
Unit level | Level 4 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
This unit describes the fundamental theory of continuum mechanics in a unified mathematical framework. The unit will cover the formulation of governing conservation and balance laws in generalised coordinates in both Eulerian and Lagrangian viewpoints. Specific examples of constitutive modelling will be developed via the theories of nonlinear and linear elasticity together with those of compressible and incompressible fluid mechanics.
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Mathematics of Waves and Fields | PHYS20171 | Pre-Requisite | Optional |
Partial Differential Equations & Vector Calculus | MATH24420 | Pre-Requisite | Optional |
Elasticity and Viscous Fluids | MATH35020 | Pre-Requisite | Compulsory |
Partial Differential Equations and Vector Calculus A | MATH20401 | Pre-Requisite | Compulsory |
Partial Differential Equations and Vector Calculus B | MATH20411 | Pre-Requisite | Compulsory |
Elasticity | MATH35021 | Pre-Requisite | Compulsory |
MATH35002 | Pre-Requisite | Compulsory |
Students are not permitted to take, for credit, MATH45061 in an undergraduate programme and then MATH65061 in a postgraduate programme at the University of Manchester, as the courses are identical.
Aims
|
Learning outcomes
On successful completion of this course unit students will be able to:
- Use tensor algebra and calculus for calculations and derivations in general (curvilinear) coordinates.
- Derive the governing equations of continuum mechanics from Lagrangian and Eulerian viewpoints using the divergence and Reynolds transport theorems and use the same principles to extend the derivations to previously unseen situations.
- Determine whether particular vectors, tensors and derivatives are objective and explain the concept of objectivity.
- Use the Clausis-Duhem inequality to derive thermodynamically consistent constitutive laws and determine any implied constraints.
- Use the general theory to formulate and solve problems in linear and nonlinear elasticity and compressible and incompressible fluid mechanics.
- Solve idealised problems in continuum mechanics analytically in spherical, cylindrical and Cartesian coordinates.
- Be able to convert the physical description of a problem in continuum mechanics into the appropriate governing equations and boundary conditions and, conversely, provide a physical interpretation for the solutions.
Syllabus
- Introduction [4]: Vectors, tensors, co- and contra-variant transformation laws, invariance concepts, metric tensor, tensor calculus, divergence theorem.
- Kinematics [4]: Deformation maps, Lagrangean and Eulerian viewpoints, displacement, velocity and acceleration, material derivative, strain measures, strain invariants, deformation rates, Reynolds transport theorem.
- Forces, momentum & stress [3]: The continuum hypothesis, linear and angular momenta, stress tensors, equations of equilibrium.
- Conservation and Balance Laws & Thermodynamics [3]: Conservation of mass and energy, balance of linear and angular momenta, work conjugacy, temperature and heat, first and second laws of thermodynamics, Clausius--Duhem inequality.
- Constitutive Modelling [3]: Introduction to constitutive relationships, axiom of objectivity, objective deformation rates, constitutive modelling for an ideal gas.
- Elasticity [5]: Constitutive modelling for thermoelastic materials, Hyperelastic materials, strain energy function, homogeneous, isotropic materials, incompressibility constraints, example analytic solutions, boundary conditions, linear thermoelasticity and reduction to Navier--Lame equations.
- Fluid Mechanics [5]: Constitutive modelling for fluids, isotropic fluids, Newtonian and Reiner--Rivlin fluids, example analytic solutions, boundary conditions, reduction to Navier--Stokes equations.
Assessment methods
Method | Weight |
---|---|
Other | 20% |
Written exam | 80% |
- Coursework - 20%: two assignments, each worth 10%; each should take aprox 7 hours.
- End of semester examination: weighting 80%
Feedback methods
Tutorials represent the principal forum for feedback, providing an opportunity for students' work on example sheet questions and the coursework to be discussed. There are two coursework assignments in the form of extended calculations that both test understanding and provide opportunities for further feedback. Students can also get feedback on their understanding directly from the lecturer by making an appointment, for example during the lecturer's office hours.
Recommended reading
- Spencer, A.J.M, Continuum Mechanics, Dover
- Gonzalez, O. and Stuart, A.M., A first course in continuum mechanics, CUP
- Irgens, F., Continuum Mechanics, Springer
Study hours
Scheduled activity hours | |
---|---|
Lectures | 12 |
Tutorials | 12 |
Independent study hours | |
---|---|
Independent study | 126 |
Teaching staff
Staff member | Role |
---|---|
John Gray | Unit coordinator |
Additional notes
The independent study hours will normally comprise the following. During each week of the taught part of the semester:
· You will normally have approximately 75-120 minutes of video content. Normally you would spend approximately 2.5-4 hrs per week studying this content independently
· You will normally have exercise or problem sheets, on which you might spend approximately 2-2.5hrs per week
· There may be other tasks assigned to you on Blackboard, for example short quizzes, short-answer formative exercises or directed reading
· In some weeks you may be preparing coursework or revising for mid-semester tests
Together with the timetabled classes, you should be spending approximately 9 hours per week on this course unit.
The remaining independent study time comprises revision for and taking the end-of-semester assessment.
The above times are indicative only and may vary depending on the week and the course unit. More information can be found on the course unit’s Blackboard page.