- UCAS course code
- H800
- UCAS institution code
- M20
Course unit details:
Laboratory Projects 2
Unit code | CHEN20020 |
---|---|
Credit rating | 20 |
Unit level | Level 2 |
Teaching period(s) | Full year |
Available as a free choice unit? | No |
Overview
Students undertake a selection of experiments using simulations, analysis of data from experiments that are demonstrated via video, by remote control, and hands-on. The experiment options include:
- mixing and emulsification,
- froth flotation tanks,
- electrochemical water treatment,
- 3- tank level control,
- gas absorption,
- batch distillation,
- filtration,
- cooling tower,
- boiling/condensation,
- refrigeration/heat pump,
- thin film evaporator.
Relevant support material on topics such as experimental design, analysing data are provided.
Aims
The unit aims to:
Develop understanding of real equipment, data analysis and problem solving by using a selection of: simulations; demonstrations followed by analysis of previously-generated data; remotely operated equipment, hands-on use of small-scale demonstration equipment; and hands-on use of large-scale experimental rigs in the pilot plant. It also aims to develop teamwork and report writing skills.
Learning outcomes
On successful completion of CHEN20020, a student will be able to… (1) Use the human senses to gather information and make sound engineering judgements about the quality of the experimental results and form conclusions. (2) Recognize unsuccessful outcomes due to faulty equipment, and where possible devise effective solutions. (3) Identify and describe the sources of systematic and random error and estimate their magnitude. (4) Make order-of-magnitude judgements about data quality and the results of calculation. (5) Demonstrate exemplary professional behaviour through high ethical standards of conduct, including the objective reporting of information and interacting with integrity and respect. (6) Given a problem to be addressed by operating a large-scale chemical engineering rig or piece of laboratory equipment, devise an experimental approach. (7) Identify the safety and environmental hazards presented by a laboratory and specific experiments and deal with the risks responsibly. (8) Record experimental results in a laboratory notebook to a professional standard, giving an appropriate level of detail. (9) Demonstrate competence in the operation of large-scale engineering rigs and laboratory equipment. (10) Communicate the work effectively to the intended audience, describing the methodology, presenting the results, and interpreting them. (11) Work effectively in teams, forming a structure and accepting joint accountability; assigning roles, responsibilities and tasks, monitoring progress; meeting deadlines and integrating individual contributions to the final report. (12) Identify the strengths and limitations of the theoretical model for an experiment as a predictor of the measured behaviour.
Teaching and learning methods
Students study the process underlying the specific experiment in advance, using materials provided on Blackboard.
On the day(s) of the experiment, students are guided through specific experiments, changing parameters on simulations, directly manipulating experimental equipment or watching demonstrations (including recorded demonstrations) remotely, making and recording observations, and developing of practical skills and knowledge. Many projects require teamwork, including allocation of tasks within the group.
At the end of each session students are given feedback on their records of the methods, results and other observations.
Students analyse the data after the practical session and prepare individual or group reports which are assessed for: the understanding shown of the significance of the process and the underlying theory, the way the methods used are recorded, how the data is analysed and presented, and the quality of the conclusions drawn.
Teaching Activities
Lecture - 1 hour
Tutorial - 1 hour
Pactical - 44 hours
Assessment (Coursework) - 140 hours
Independent Study - 14 hours
Assessment methods
Assessment task | Weighting within unit |
Worksheet - Short Experiment 1 | 2% |
Report - Short Experiment 1 | 18% |
Report - Long Experiment 1 | 18% |
Worksheet - Short Experiment 2 | 2% |
Report - Short Experiment 2 | 18% |
Report - Long Experiment 2 | 18% |
Report - Long Experiment 3 | 18% |
Temperature Measurement Worksheet | 3% |
DCS Experiment | 3% |
Teaching staff
Staff member | Role |
---|---|
Bernard Treves Brown | Unit coordinator |
Hosameldin Anwar Mohamed Abdel Aleem | Unit coordinator |
Abdullatif Alfutimie | Unit coordinator |