MEng Chemical Engineering

Year of entry: 2024

Course unit details:
Chemical Reactor Design

Course unit fact file
Unit code CHEN20141
Credit rating 10
Unit level Level 2
Teaching period(s) Semester 1
Available as a free choice unit? No


  • Introduction to Chemical Reactor Design (CRD): Importance, example application areas and basic definitions.
  • Rate laws, stoichiometry, reaction rates and reaction order.
  • General mole balance for ideal reactors including Batch, CSTR and PFR.
  • Design appropriate reactor configurations for simple and complex reaction chemistries, including gas reactions, recycle reactor, CSTRs in series and autocatalytic reactions.
  • Effect of reactor type on product distribution in multiple reactions including series and parallel reactions.
  • Design of adiabatic and non-adiabatic reactors.
  • Optimum temperature progression for reversible exothermic reactions.
  • Reactor stability, pressure effects, feed composition effects and reactor safety.

Examples used throughout this unit will demonstrate the use of the principles taught on process and bioprocess engineering.


The unit aims to:

To introduce and develop an understanding of reaction rate kinetics and apply this to the design of process reactors for homogeneous systems.  


Learning outcomes

ILO 1: Explain and derive simple differentiated and integrated rate equations for series, parallel and reversible chemical reactions.

ILO 2:Explain and derive mass and heat balance equations for the main types of industrial reactors (batch, PFR, CSTR).

ILO 3:Use quantitative methods to design and size reactors for homogeneous reaction schemes.

ILO 4:Explain the main drivers in economic and safe reactor design.

ILO 5:Analyse and evaluate scientific and engineering information and identify knowledge gaps and opportunities to design a reactor system for simple and more complex reactions.

Teaching and learning methods

Lectures provide fundamental aspects supporting the critical learning of the module and will be delivered as pre-recorded asynchronous short videos via our virtual learning environment.

Synchronous sessions will support the lecture material with Q&A and problem-solving sessions where you can apply the new concepts. Surgery hours are also available for drop-in support.

Feedback on problems and examples, feedback on coursework and exams, and model answers will also be provided through the virtual learning environment. A discussion board provides an opportunity to discuss topics related to the material presented in the module.

Students are expected to expand the concepts presented in the session and online by additional reading (suggested in the Online Reading List) in order to consolidate their learning process and further stimulate their interest to the module.

Study budget:

  • Core Learning Material (e.g. recorded lectures, problem solving sessions): 24 hours
  • Self-Guided Work (e.g. continuous assessment, extra problems, reading)     : 44 hours
  • Exam Style Assessment Revision and Preparation: 32 hours

Assessment methods

Assessment Types

Total Weighting

Continuous assessment


Exam style assessments


Please note that the exam style assessments weighting may be split over midterm and end of semester exams.

Recommended reading

Reading lists are accessible through the Blackboard system linked to the library catalogue.

Teaching staff

Staff member Role
Wennie Subramonian Unit coordinator
Philip Martin Unit coordinator

Return to course details