MEng Chemical Engineering

Year of entry: 2024

Course unit details:
Materials Science and Mechanical Design

Course unit fact file
Unit code CHEN20191
Credit rating 10
Unit level Level 2
Teaching period(s) Semester 1
Available as a free choice unit? No


Materials Science unit:
8 lectures + 4 tutorials
A wide range of potential materials exist for selection in chemical engineering designs. They can be classified into families, such as metals, ceramics and polymers based on their mechanical properties such as strength, ductility, toughness, etc. Based on an understanding of these properties materials suited to specific applications can be chosen. However, to correctly select materials for a specific application a wide range of factors must be considered such as cost, wear, fatigue, operating temperatures and corrosion. Numerous corrosion mechanisms exist, correctly identifying which are relevant to an environment-material combination is essential for finding the right combination and alleviating the impact of corrosion.

Mechanical Design unit:
8 lectures + 4 tutorials
This part of the unit will cover some basic principles of mechanical engineering, which chemical engineers must have in order to develop design project skills and interface with other disciplines in a wider context. The unit will cover static equilibrium calculations of beams, including sketching of shear force and bending moment diagrams; tension and compression within beams; design of beam cross-section; deflection and buckling of beams and columns; failure modes of mechanical equipment; concept of plane state of stress; concepts of longitudinal, circumferential and radial stress in pressure vessels; basic design of pressure vessels subject to internal and external pressure using the thin wall assumption; effect of combined loads on pressure vessel design; design of pressure vessels supports; design of pressure vessels subject to high internal pressure using the thick wall assumption; design of liquid storage tanks.


The unit aims to:
Develop a basic understanding of materials science, corrosion and statics. Apply this knowledge to analyse and design chemical engineering unit operations by selecting suitable materials of construction. Apply the concept of static equilibrium to process structures. Evaluate the mechanical behaviour of process structures under loading conditions. Perform mechanical design calculations on structures, columns, pressure vessels, storage tanks and vessel supports.


Learning outcomes

ILO 1: Calculate the relevant properties of materials using experimental data.

ILO 2:Calculate safe design criteria: yield stress, cycles to failure and fast fracture (leak before break, yield before break).

ILO 3: Calculate corrosion rates, differentiate between corrosion mechanisms and explain how to mitigate them.

ILO 4: Assess a combination of factors in order to select the correct material for a specific design.

ILO 5: Develop the ability to perform static equilibrium calculations on supported structures.

ILO 6: Perform shear stress, bending moment, cross-section and buckling calculations on supported structures and columns.

ILO 7: Explain the concept of state of stress and apply this to pressure vessels and process equipment.

ILO 8: Perform design calculations for process structures, tanks, pressure vessels and vessel supports under various loading conditions.

Teaching and learning methods

Lectures provide fundamental aspects supporting the critical learning of the module and will be delivered as pre-recorded asynchronous short videos via our virtual learning environment.

Synchronous sessions will support the lecture material with Q&A and problem-solving sessions where you can apply the new concepts. Surgery hours are also available for drop-in support.

Feedback on problems and examples, feedback on coursework and exams, and model answers will also be provided through the virtual learning environment. A discussion board provides an opportunity to discuss topics related to the material presented in the module.

Students are expected to expand the concepts presented in the session and online by additional reading (suggested in the Online Reading List) in order to consolidate their learning process and further stimulate their interest to the module.

Study budget:

  • Core Learning Material (e.g. recorded lectures, problem solving sessions): 24 hours
  • Self-Guided Work (e.g. continuous assessment, extra problems, reading)     : 44 hours
  • Exam Style Assessment Revision and Preparation: 32 hours


Assessment methods

Assessment Types

Total Weighting

Continuous assessment


Exam style assessments


Please note that the exam style assessments weighting may be split over midterm and end of semester exams.

Recommended reading

Reading lists are accessible through the Blackboard system linked to the library catalogue.

Teaching staff

Staff member Role
Carmine D'Agostino Unit coordinator

Return to course details