Don't just imagine your future at University, experience it first-hand!

Step into the shoes of an undergraduate student and join us for our upcoming on-campus Discover Days in Science, Engineering and Fashion. These days are tailored exclusively for Year 12s who are interested in taking their academic journey to the next level. Find your favourite subject now!

Find out more about our Discover Days in Science, Engineering and Fashion

MEng Materials Science and Engineering with Biomaterials

Year of entry: 2024

Course unit details:
Drug Delivery & Biosensors

Course unit fact file
Unit code MATS31802
Credit rating 10
Unit level Level 6
Teaching period(s) Semester 2
Offered by Department of Materials
Available as a free choice unit? No

Overview

Materials for drug delivery and biosensors both consider the interaction between synthetic substances and biological or biologically active molecules.

Aims

The unit aims to:

  • Provide the students with a working knowledge of how contemporary polymeric materials are used and fabricated as biomaterials for the treatment of disease and disability; and
  • Provide an introduction to the theory, methods and regulatory aspects related to the use of biosensors for analyte detection.

Learning outcomes

A greater depth of the learning outcomes will be covered in the following sections:

  • Knowledge and understanding
  • Intellectual skills
  • Practical skills
  • Transferable skills and personal qualities

Teaching and learning methods

Lectures (live and pre-recorded), coursework, recommended textbooks, web resources, past exam papers, electronic supporting information (Blackboard).

Knowledge and understanding

  • Know the most widely used classes of polymers used for the fabrication of biomedical materials.
  • Understand the reasons for the use of polymers to achieve controlled delivery of drugs in relation to polymer degradation mechanisms.
  • Understand the polymer chemistry and structure-property relationships for each of the types of polymer studied.
  • Describe the origins of selectivity in various biosensors.
  • Describe the theory and operation of biosensors.
     

Intellectual skills

  • Relate polymer structure and properties to their performance in vitro and in vivo.
  • Recognise the main benefits of microspheres and nanoparticles in drug delivery applications.
  • Mathematically relate spectroscopic or electrochemical changes to the presence of or concentration of an analyte.
     

Transferable skills and personal qualities

  • Summarise key points of a scientific paper coherently and succinctly

Assessment methods

Method Weight
Written exam 70%
Written assignment (inc essay) 30%

Feedback methods

Written and verbal

Recommended reading

  • Biomaterials science, an introduction to materials in medicine, 3rd revised edition, B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, eds., Elsevier Academic Press, Oxford, 2012.
  • Chemical sensors and biosensors, B. R. Eggins, John Wiley & Sons, Chichester, 2002.
  • Biodegradable polymers as drug delivery systems, M. Chasin and R. Langer, eds., Marcel Dekker, New York, 1990.
  • Novel drug delivery systems, 2nd edition, Y. W. Chien, CRC Press, 1991.
     

Study hours

Scheduled activity hours
Lectures 20
Practical classes & workshops 6
Tutorials 3
Independent study hours
Independent study 71

Teaching staff

Staff member Role
Jonny Blaker Unit coordinator

Return to course details