- UCAS course code
- F205
- UCAS institution code
- M20
MEng Materials Science and Engineering with Textiles Technology / Course details
Year of entry: 2024
- View tabs
- View full page
Course unit details:
Mechanical Behaviour
Unit code | MATS16102 |
---|---|
Credit rating | 10 |
Unit level | Level 4 |
Teaching period(s) | Semester 2 |
Offered by | Department of Materials |
Available as a free choice unit? | No |
Overview
This unit provides an introductory level, overview, of the mechanical behaviour of engineering materials, including how different types of mechanical behaviour are defined and the mechanisms that control them, in relation to their structures; illustrated with examples from all material classes.
Aims
The unit aims to:
- Provide an overview of the different types of mechanical behaviour of all material classes for design purposes and predicting in-service life,
- Introduce the continuum solid mechanics approach to describe stress states and mechanical loading of materials.
- Introduce the mechanisms that control the mechanical behaviour of materials and how they are affected by its structure at different length scales.
Learning outcomes
A greater depth of the learning outcomes will be covered in the following sections:
- Knowledge and understanding
- Intellectual skills
- Practical skills
- Transferable skills and personal qualities
Teaching and learning methods
Pre-recorded materials and written lecture notes (available on Blackboard), face-to-face activities and revision sessions, small group tutorials (problem sessions), on-line self-assessment quizzes, recommended textbooks, web resources, past exam papers, peer-assisted study sessions (PASS).
Knowledge and understanding
- Compare and discuss the mechanical behaviour of different materials classes.
- Define the stress tensor and the (small) strain tensor.
- Define volumetric and deviatoric strains and hydrostatic and deviatoric stresses.
- Understand the relationship between stress and strain in isotropic elasticity.
- Define stiffness and compliance, Young’s modulus, Shear modulus, Bulk Modulus, Poisson’s ratio.
- Understand the tensile test and how to use it to obtain material properties.
- Define the Von Mises and Tresca yield criteria.
- Understand the slab model of composite mechanics and define upper (Voigt) and lower (Reuss) bounds for composite stiffness.
- Describe the mechanisms of plastic deformation and strengthening of crystalline materials in terms of simple dislocation concepts.
- Demonstrate an understanding of fracture toughness and the different fracture behaviours of materials.
- Be aware of the factors that affect fatigue and creep in materials.
- Describe and show an understanding of the effect of the glass transition temperature on the properties of polymers and their viscoelastic behaviour.
- Be able to link a materials structure to its properties, in general terms.
Intellectual skills
- Show improved logical reasoning, problem solving and ability in applied mathematics.
- Demonstrate an understanding of the effect of changing the chemistry and microstructure/architecture of a material on its properties.
Practical skills
- Perform continuum mechanics calculations: obtain stress from (elastic) strains, and vice-versa, calculate deviatoric components, equivalent stresses. Calculate the stiffness of single composite lamina
- Perform simple calculations of material properties and safe design limits; e;g; the critical stress for fast fracture.
- Carry out, and analyse the results from, tensile and impact fracture tests on materials
Transferable skills and personal qualities
- Convert word problems into equations and numerical answers.
- Develop techniques for estimating the results from calculations.
- Work effectively in a group to solve problems.
- Compose simple technical reports on laboratory tests.
Assessment methods
Method | Weight |
---|---|
Written exam | 70% |
Written assignment (inc essay) | 30% |
Feedback methods
Feedback given (written)
Recommended reading
- “Materials Science and Engineering”, W. D. Callister, and D. G. Rethwisch, Pub. Wiley, 10th edition, 2020.
- “Materials engineering, science, processing and design”, M.F. Ashby H.R. Shercliff and D. Cebon, Butterworth-Heinemann, 3rd edition, 2013.
- “Engineering materials 1: An introduction to properties, applications and design”, M. F. Ashby, D. R. H. Jones, Butterworth-Heinemann, 2nd edition, 1996.
- “Introduction to dislocations”, D. Hull and D.J. Bacon, Butterworth-Heinemann 5th edition, 2011.
- “Introduction to Polymers”, R.J. Young, P.A. Lovell Taylor & Francis Group, 3rd edition, 2011.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 20 |
Independent study hours | |
---|---|
Independent study | 80 |
Teaching staff
Staff member | Role |
---|---|
Enrique Jimenez-Melero | Unit coordinator |