Coronavirus information for applicants and offer-holders

We understand that prospective students and offer-holders may have concerns about the ongoing coronavirus outbreak. The University is following the advice from Universities UK, Public Health England and the Foreign and Commonwealth Office.

Read our latest coronavirus information

MEng Chemical Engineering / Course details

Year of entry: 2021

Course unit details:
Process Fluid Dynamics

Unit code CHEN44211
Credit rating 15
Unit level Level 4
Teaching period(s) Semester 1
Offered by Department of Chemical Engineering & Analytical Science
Available as a free choice unit? No


The unit is divided in three parts.


Part 1. Integral analysis and compressible flow: Reynold’s transport theorem for mass, energy and momentum; review of Thermodynamics of gases; stagnation properties and critical conditions in gases; basic equation for one-dimensional compressible flow; isentropic compressible flow in pipes with variation of area in sonic, subsonic, and supersonic conditions; reference stagnation and critical conditions for isentropic flow; isentropic flow in converging nozzles and in converging-diverging nozzles; compressible flow in pipes of constant area with friction; adiabatic flow (Fanno flow); and compressible frictionless flow with heat exchange (Rayleigh flow).


Part 2. Non-Newtonian flow: review of differential equations of fluid mechanics including the convective derivative, differential mass balances, differential momentum balances, and stress components in various coordinate systems; classification of non-Newtonian fluids; constitutive equations for inelastic viscous fluids including power-law fluids and Bingham plastics; elementary rheology and non-Newtonian flow calculations.


Part 3. Bubble motion and Two-phase flow: Rise of bubbles in unconfined systems; pressure drop and void fraction in horizontal pipes; two phase flow in vertical pipes including the analysis of limits of bubble flow and gas-lift pumps.



Unit title Unit code Requirement type Description
Engineering Mathematics 1 CHEN10011 Pre-Requisite Compulsory
Process Fluid Flow CHEN10031 Pre-Requisite Compulsory
Process Heat Transfer CHEN10092 Pre-Requisite Compulsory
Engineering Mathematics 2 CHEN10072 Pre-Requisite Compulsory
Momentum, Heat & Mass Transfer CHEN20112 Pre-Requisite Compulsory


The unit aims to:


Provide competence with advanced topics of Fluid Mechanics including (a) integral analysis of mass, energy and momentum flow, (b) description of incompressible flow, (c) analysis of fluid flow in Newtonian and non-Newtonian Fluids; and (d) analysis of fluid flow in systems comprising two phases.


Learning outcomes

ILO 1. Analyze and appraise the differences between differential and integral analysis in fluid mechanics.

ILO 2. Analyze and quantify the flow of compressible fluids in process equipment and appraise the difference on behavior with respect to incompressible fluids.

ILO 3. Evaluate the conditions at which the fluids behave as compressible fluids and evaluate the conditions required for the optimum control of the flow.

ILO 4. Describe the differences and similitudes of the analysis of compressible flow under (a) isentropic conditions, (b) adiabatic and irreversible (friction) conditions, and (c) isothermal conditions.

ILO 5. Describe and explain the physics that take place in incompressible fluids flowing through converging and diverging nozzles and diffusers, as well as in pipelines of constant and non-constant area.

ILO 6. Apply numerical methods in high-level general-purpose programming languages to describe the flow of gases in pipes.

ILO 7. Describe and evaluate the differences on behavior between Newtonian and nonNewtonian fluids.

ILO 8. Appraise the behavior of the viscosity of non-Newtonian fluids under different shear stresses.

ILO 9. Formulate simple models to describe the fluid flow of simple generalized Newtonian fluids and formulate the corresponding constitutive equations to describe the flow in different geometries using Navier-Stokes equations under laminar regime.

ILO 10. Describe models for viscoelastic fluids and formulate constitutive equations for the fluid flow in different geometries.

ILO 11. Appraise the most commonly used measuring techniques for viscosity and rheological properties of complex fluids.

ILO 12. Apply numerical methods in high-level general-purpose programming languages to describe the fluid flow of simple non-Newtonian fluid models.

Teaching and learning methods

Lectures: 2 hours per week


Tutorial: an hour per week in the EBL suite. There will be 8 tutorial sessions (approximately 7 problems per session)


Coursework: one on-line test in Blackboard at the end of the semester that will cover all topics of the semester.


Discussion board: A discussion board will be maintained during the semester for discussion of various topics


Assessment methods

Method Weight
Other 30%
Written exam 70%

Feedback methods

Individual feedback as requested. Unit leader will release generic feedback upon completion of course.

Study hours

Scheduled activity hours
Lectures 36
Independent study hours
Independent study 126

Teaching staff

Staff member Role
Carlos Avendano Jimenez Unit coordinator

Additional notes

This course unit detail provides the framework for delivery in 20/21 and may be subject to change due to any additional Covid-19 impact.  Please see Blackboard / course unit related emails for any further updates.

Return to course details