
- UCAS course code
- VL53
- UCAS institution code
- M20
Course unit details:
Answering Social Research Questions with Statistical Models
Unit code | SOST30031 |
---|---|
Credit rating | 20 |
Unit level | Level 3 |
Teaching period(s) | Semester 1 |
Offered by | Social Statistics |
Available as a free choice unit? | Yes |
Overview
Based on the central theme of investigating social inequality, I introduce the concepts, theory and application of two important statistical modelling techniques in social science: multiple regression and logistic regression.
Lecture Schedule
1. Some important studies, measures and concepts of social inequality.
2. Identifying secondary data on social inequality (e.g. via esds.ac.uk); units of analysis; area and individual level data; types of response and explanatory variable.
3. Introducing linear regression - modelling an interval response variable like income. software.
4. linear regression continued. Model selection.
5. linear regression continued. Checking the assumptions, reporting the results.
6. Examples of linear regression in studies of social inequality in the literature such as measuring social distance.
7. Introducing logistic regression - modelling a dichotomous response variable like unemployment.
8. Logistic regression continued - odds ratios, model selection.
9. Group student presentations of examples of inequality
10. Review and exam preparation
Aims
The unit aims to:
(i). Outline some important studies, measures, concepts and theories of social inequality, both in the UK and worldwide.
(ii) Introduce some valuable web-based resources of secondary quantitative data, both for the UK and worldwide.
(iii) Explain how linear regression may be used to test hypotheses regarding social inequalities when the response variable has an interval scale, and how logistic regression may be used when the response variable has two categories.
(iv) Demonstrate how the SPSS statistical package may be used to carry out such analyses.
(v) Give details of assessing the statistical quality of linear and logistic regression model fit, and the substantive interpretation of the results.
(vi) Provide examples of the use of linear and logistic regression in the literature on social inequality.
Learning outcomes
Student should/will be able to
Knowledge and Understanding: A critical understanding of when linear or logistic regression analysis might be appropriate to analyse quantitative social data given substantive hypotheses on social inequality. Some social outcomes or indices like income are on interval scales for which linear regression may be used. Other social outcomes like education or employment have two categories (or can be re-coded to have two categories) for which logistic regression may be used.
Intellectual skills: How to formulate hypotheses to investigate social inequality with linear and regression models. How to decide which variables to include on a substantive basis.
Practical skills: How to fit linear regression models in SPSS.
Transferable skills and personal qualities: Ability to formulate and run linear and logistic regression models for other substantive problems. Ability to use SPSS.
Teaching and learning methods
The module will involve: lectures, computer labs, and data analysis tasks using SPSS.
Extensive use will be made of relevant on-line resources including: literature resources and examples of use of software. Moreover, the data itself will be accessed on-line.
Blackboard resources will be used to provide lecture materials.
Please note the information in scheduled activity hours are for guidance only and may change.
Assessment methods
Method | Weight |
---|---|
Written exam | 60% |
Written assignment (inc essay) | 40% |
Feedback methods
All Social Statistics courses include both formative feedback – which lets you know how you’re getting on and what you could do to improve – and summative feedback – which gives you a mark for your assessed work.
Recommended reading
Background
Wilkinson R. Pickett K 'The Spirit Level: Why Equality is Better for Everyone'.
Jones O. (2012) 'Chavs: The Demonization of the Working Class' ; 2nd Revised edition. Verso Books
Dorling D. (2011) 'Injustice: Why Social Inequality Persists' (Paperback). Policy Press.
Dorling D (2013) 'The 32 Stops'. Penguin.
Field A (2013) Discovering Statistics using IBM SPSS Statistics [Paperback]. Sage.
On-line Resources
Is Britain Pulling Apart? http://www.camsis.stir.ac.uk/pullingapart/
Economic & Social Data Service (ESDS) http://www.esds.ac.uk
ESDS international http://www.esds.ac.uk/international/
Research Methods Centre http://www.ncrm.ac.uk/
Methods@Manchester www.methods.manchester.ac.uk/
Study hours
Scheduled activity hours | |
---|---|
Lectures | 20 |
Practical classes & workshops | 10 |
Independent study hours | |
---|---|
Independent study | 170 |
Teaching staff
Staff member | Role |
---|---|
Nicholas Shryane | Unit coordinator |