Early clearing information

This course is available through clearing for home and international applicants

If you already have your exam results, meet the entry requirements, and are not holding an offer from a university or college, then you may be able to apply to this course.

Contact the admissions team

Master of Engineering (MEng)

MEng Civil Engineering with Industrial Experience

Gain advanced yet hands-on experience at one of the Most Sought-After Universities by Top Graudate Employers (THE Graduate Market, 2024).

  • Duration: 5 years
  • Year of entry: 2025
  • UCAS course code: H207 / Institution code: M20
  • Key features:
  • Industrial experience
  • Scholarships available
  • Field trips
  • Accredited course

Full entry requirementsHow to apply

Course unit details:
Computational Hydraulics

Course unit fact file
Unit code CIVL42002
Credit rating 15
Unit level Level 4
Teaching period(s) Semester 2
Available as a free choice unit? No

Overview

Part 1: The Finite-Volume Method - the dominant approach to fluid-flow simulation in general-purpose CFD codes. This section includes practical civil-engineering-type exercises with the major commercial code StarCCM+.

Part 2: Shallow-Water Flows - specialist CFD for civil engineering. Widely used in predicting river, estuarine and coastal flows.

Pre/co-requisites

Unit title Unit code Requirement type Description
Hydraulics 2 CIVL20041 Pre-Requisite Compulsory
Hydraulics 1 CIVL10101 Pre-Requisite Compulsory
Hydraulics 3 CIVL34001 Pre-Requisite Compulsory

Aims

  • To introduce students to the numerical simulation of incompressible fluid flow.
  • For students to understand and be able to choose and apply appropriate discretisation techniques for partial differential equations, particularly those describing fluid flow.
  • To acquaint students with major in-house and commercial CFD (computational fluid dynamics) software and how to apply such software to typical civil-engineering problems, such as wind-loading, ventilation, pollution dispersion, coastal and estuarine flows.

Syllabus

Part 1: The Finite-Volume Method (Dr Apsley)
(1) Governing equations: conservative and non-conservative forms; some exact solutions; common approximations.
(2) Finite-volume techniques: discretisation of standard advection-diffusion problem; time-marching; pressure-correction methods; computer methods for solving matrix equations.
(3) Turbulence and its modelling: Reynolds averaging and Reynolds stresses; basic theory and log law; “industry-type” turbulence models.
(4) 3D geometric techniques (areas, volumes, averages) and presentation of 3D data.
(5) Use of in-house research code STREAM (1 exercise) and commercial code StarCCM+ (2 exercises) for industry-type problems (e.g. wind loading).

Part 2: Shallow-Water Flows (Dr Rogers)
(6) Shallow-water (depth-averaged) approximation and equations; specialist solution techniques.
(7) In-house software example (1 exercise).

Assessment methods

Method Weight
Written exam 50%
Report 50%

Feedback methods

Individual feedback will be posted online after marking, with common problems summarised in class.

Exam - class summary in Blackboard

Study hours

Scheduled activity hours
eAssessment 32
Lectures 34
Tutorials 6
Independent study hours
Independent study 78

Teaching staff

Staff member Role
David Apsley Unit coordinator

Return to course details