- UCAS course code
- GG41
- UCAS institution code
- M20
Bachelor of Science (BSc)
BSc Computer Science and Mathematics with Industrial Experience
- Typical A-level offer: A*A*A including specific subjects
- Typical contextual A-level offer: AAA including specific subjects
- Refugee/care-experienced offer: AAB including specific subjects
- Typical International Baccalaureate offer: 38 points overall with 7,7,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please visit our undergraduate student finance pages .
Course unit details:
Data Science
Unit code | COMP13212 |
---|---|
Credit rating | 10 |
Unit level | Level 1 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | Yes |
Overview
This course unit has two objectives. The first is to introduce the student to a range of fundamental, non-trivial algotithms, and to the techniques required to analyse their correctness and running-time.
The second is to present a conceptual framework for analysing the intrinsic complexity of computational problems, which abstracts away from details of particular algorithms.
Aims
Learning outcomes
- Demonstrate awareness of the “Data Science Process” by describing qualitatively how it would apply in a given situation.
- Demonstrate awareness of need for data cleaning descriptively and by doing elementary data cleaning and preparation in the laboratory.
- Demonstrate ability to measure and express uncertainty from a set of data and quantities derived from that data.
- Demonstrate ability to choose and build appropriate models of different datasets.
- Demonstrate ability to evaluate the quality of a model of a dataset.
- Demonstrate the ability compare different models of a dataset and models of different dataset in order to draw statistically sound conclusions about hypotheses or claims from the data.
- Demonstrate ability to use python tools to: read and write data sets to and from files, produce descriptive statistics and draw conclusions from these, produce graphical visualisation and draw conclusions, perform basic statistical tests including the difference between means, and perform a simple machine learning experiment by building an email spam filter using a naive Bayes classifier.
Teaching and learning methods
Lectures and coursework reported via Jupyter notebooks in Python.
Assessment methods
Method | Weight |
---|---|
Written exam | 80% |
Practical skills assessment | 20% |
Recommended reading
To be determined
Study hours
Scheduled activity hours | |
---|---|
Lectures | 22 |
Practical classes & workshops | 12 |
Independent study hours | |
---|---|
Independent study | 66 |
Teaching staff
Staff member | Role |
---|---|
Ainur Begalinova | Unit coordinator |