Master of Engineering (MEng)

MEng Mechanical Engineering with Management

Our university is ranked 4th in the UK for Mechanical Engineering (QS World Rankings 2024)

  • Duration: 4 years
  • Year of entry: 2025
  • UCAS course code: H3ND / Institution code: M20
  • Key features:
  • Study abroad
  • Scholarships available

Full entry requirementsHow to apply

Fees and funding

Fees

Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £34,000 per annum. For general information please see the undergraduate finance pages.

Policy on additional costs

All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).

Scholarships/sponsorships

The Institute of Mechanical Engineers also has a range of scholarships available to students who are about to commence their Institution-accredited degree.

The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.

For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .

Course unit details:
Additive Manufacturing & 3D Product Modelling

Course unit fact file
Unit code MECH40362
Credit rating 15
Unit level Level 4
Teaching period(s) Semester 2
Available as a free choice unit? No

Overview

CAD modelling of parts is an essential requirement for any engineering activity. This module aims to describe the theory behind solid and surface modelling, the various transformations including 3D viewing, and the procedures involved in creating a CAD model of a part from scanned cloud points. 

The second part of the module details the main additive manufacturing techniques from hardware and software viewpoints; different materials and material change transformation during the fabrication process are discussed, including applications in various sectors such as aerospace and automotive.

 

Aims

To provide a comprehensive understanding of the principles involved in creating CAD models of complex objects and gain a thorough understanding of the main additive manufacturing techniques for mass customisation and mass personalisation. 

Syllabus

(i)             Geometric Transformations and Viewing. Translation, rotation, scaling, reflection, shear; homogenous co-ordinates; rotation about an arbitrary axis; composite transformations. Three-dimensional viewing; parallel (axonometric, oblique and orthographic) and perspective viewing transformations.

(ii)           Surface Modelling. Parametric representation of Hermite, Bezier and B-spline curvescurves; mathematical representation of Bezier  and B-spline surfaces.

(iii)          Solid Modelling. Different types of models-constructive solid geometry, cell decomposition and boundary models .including polygon-, vertex and edge-based models, Boolean and sweep operations; data structures for boundary models. Theory of Boolean operations.

(iv)         Reverse engineering: Survey of different commercially-available scanners - non-contact and contact devices; registration; triangulation; segmentation; surface fitting and solid model creation.

(v)          Introduction to additive manufacturing: International industrial context; Product development; Mass customization and mass personalization; Definitions; Process Classification; Advantages of additive manufacturing; market overview; Historical overview – from rapid prototyping to rapid manufacturing and biomanufacturing; AM information flow: CAD, conversion to STL, Slicing.

(vi)         Extrusion processes: Process overview; materials process; parameters; commercial available systems; Non-commercial/under development systems; applications.

(vii)        Ink-jet based processes: Material jetting versus binder jetting processes; technical challenges: droplet formation, continuous mode, drop-on-demand; Materials and modification methods; commercial available systems; Non-commercial/under development systems; applications.

(viii)       Vat photopolymerization: Process overview; UV curable polymers; overview of photopolymer chemistry; laser-polymer interaction; direct irradiation versus mask irradiation; two photon-polymerization systems; commercially available systems; non-commercial systems/systems under development; applications.

(ix)         Fusion processes: Powder bed fusion processes versus direct energy deposition; materials; powder fusion mechanisms; process parameters; new developments – hybrid systems; commercially available systems; applications.

The module contains one project which is done in groups of two; each group develops code in MATLAB to reverse engineer a whisky glass; the glass designed by each group is then fabricated using an appropriate additive manufacturing technique. The aims of the project are:

(i) for students to gain a thorough understanding of the different stages involved in reverse engineering;

(ii) be able to appreciate the causes of the differences between the designed and actual glasses, and

(iii) gain first-hand experience in using an additive manufacturing technique.

Assessment methods

Method Weight
Written exam 80%
Report 20%

Feedback methods

Exam - Solutions posterd on Blackboard after examination

Report - Two weeks after submission

Study hours

Scheduled activity hours
Lectures 33
Practical classes & workshops 6
Tutorials 3
Independent study hours
Independent study 108

Teaching staff

Staff member Role
Changling Charlie Wang Unit coordinator

Return to course details