
- UCAS course code
- F012
- UCAS institution code
- M20
BSc/MEnvSci Environmental Science with an Integrated Foundation Year / Course details
Year of entry: 2023
- View tabs
- View full page
Course unit details:
World of the Electron Phys 2
Unit code | FOUN10111 |
---|---|
Credit rating | 10 |
Unit level | Level 1 |
Teaching period(s) | Semester 1 |
Available as a free choice unit? | No |
Overview
A course which will allow students to gain essential knowledge and understanding of physical, electrical and magnetic principles
Aims
The aim is to allow students to gain essential knowledge and understanding of physical, electrical and magnetic principles.
Learning outcomes
By the end of this course unit a student will be able to:
- Describe the properties and interaction of electrically charged objects and electric fields, with reference to electrostatic forces, potential, potential energy and work.
- Analyse simple DC circuits consisting of capacitors or resistors under steady state conditions.
- Contrast the properties and behaviour of the common classes of magnetic materials (including superconductors).
- Determine the characteristics of magnetic fields resulting from simple configurations of current-carrying conductors.
- Describe the behaviour of moving charges or current-carrying conductors in magnetic fields (and its technological significance).
- Explain, with examples, the consequences and implications of electromagnetic induction.
- With reference to Bohr’s atomic model, account for the emission and absorption spectra of hydrogen.
- Use the band theory of solids to explain the electronic properties of conductors, insulators and semiconductors and the role of doping in simple semiconductor devices (including the p-n junction).
Syllabus
Electrostatics, electric fields, electrical potential, energy and work.
Capacitors, resistors, DC circuits, electrical power.
Magnetic materials, superconductivity, magnetic fields and forces, motors.
Electromagnetic induction, Lenz’s law, generators and transformers.
Bohr’s hydrogen atom, absorption/emission, band theory of solids, semiconductors.
Teaching and learning methods
Lectures, tutorials, drop-in sessions, private study.
Assessment methods
Method | Weight |
---|---|
Other | 20% |
Written exam | 80% |
Feedback methods
Formative feedback will be given during lectures, tutorials and drop-in sessions. Targeted feedback will be given following coursework assessments. Summative and formative feedback will be given following assessments, including the final exam (exam script viewing is encouraged).
Recommended reading
BIRD, J. 2005. Basic Engineering Mathematics [online book]. (ISBNO-7506-6575-0)
ADAMS, S. & ALLDAY, J. 2000. Advanced Physics. Oxford University Press, Oxford. (ISBN-10: 0199146802)
JOHNSON, K., et al. 2000. Advanced physics for you. Nelson Thornes, Cheltenham. (ISBN-10: 074875296X)
MUNCASTER, R., 1993. A-level physics (4th Edition). Stanley Thornes, Cheltenham. (ISBN:0748715843)
POPLE, S., 1998. Advanced physics through diagrams. Oxford University Press, Oxford. (ISBN: 9780199147212, 9780199147229, 0199147213)
AKRILL, T., BENNETT, G. & MILLAR, C., 2000. Practice in Physics (3rd Edition). Hodder & Stoughton Educational, London. (ISBN: 0340758139)
CUTNELL, J., & JOHNSON, K., 2005. Essentials of physics Hoboken, N.J. (ISBN: 0471713988)
Study hours
Scheduled activity hours | |
---|---|
Assessment written exam | 2 |
Lectures | 24 |
Tutorials | 11 |
Independent study hours | |
---|---|
Independent study | 63 |
Teaching staff
Staff member | Role |
---|---|
Jonathan Sly | Unit coordinator |