- UCAS course code
- F345
- UCAS institution code
- M20
Bachelor of Science (BSc)
BSc Physics with Theoretical Physics
- Typical A-level offer: A*A*A including specific subjects
- Typical contextual A-level offer: A*AA including specific subjects
- Refugee/care-experienced offer: AAA including specific subjects
- Typical International Baccalaureate offer: 38 points overall with 7,7,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,500 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please visit our undergraduate student finance pages and our Department funding pages .Course unit details:
Lagrangian Dynamics
Unit code | PHYS20402 |
---|---|
Credit rating | 10 |
Unit level | Level 2 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
Lagrangian Dynamics
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Dynamics | PHYS10101 | Pre-Requisite | Compulsory |
Vibrations & Waves | PHYS10302 | Pre-Requisite | Compulsory |
Mathematics 2 | PHYS10372 | Pre-Requisite | Compulsory |
Aims
To introduce the Lagrangian and Hamiltonian formulations of classical mechanics. To develop the knowledge and skills required to solve a variety of dynamical problems involving more than one degree of freedom.
Learning outcomes
On completion successful students will be able to:
1. Choose an appropriate set of generalised coordinates to describe a dynamical system and obtain its Lagrangian in terms of those coordinates and the associated 'velocities'. Derive and solve the corresponding equations of motion. Treat small oscillations as an eigenvalue problem.
2. Apply a variational principle to solve simple problems involving constraints.
3. Appreciate symmetries and how they manifest themselves in terms of constants of the motion.
4. Obtain generalised momenta and thus the Hamiltonian of a dynamical system. Derive and solve the equations of motion in Hamiltonian form.
Syllabus
1. Introduction
Review of Newtonian mechanics: internal forces, external forces, forces of constraint. Rotational problems and polar coordinates.
Conservation laws and conservative systems.
Partial derivatives.
2. Lagrangian Dynamics
The energy method plus other conservation laws.
The Lagrangian and Lagrange’s equation.
Small oscillations and normal modes.
3. Calculus of Variations
Functional minimization.
The Euler-Lagrange equations.
Constrained variation.
Hamilton’s principle of least action.
Lagrangian dynamics.
4. The Hamiltonian Formalism
Legendre transformations.
Generalized momenta, the Hamiltonian and Hamilton's equations.
Phase space. Liouville’s theorem
5. Symmetries and Conservation Laws
Generators of transformations.
Poisson brackets.
Symmetries of the Lagrangian produce constants of motion. Noether’s theorem.
6. Normal Modes from Matrices
Normal modes from symmetries.
Review of mathematics of matrices: eigenvalues and eigenvectors.
Diagonalizing a matrix using its eigenvectors.
Small oscillations as eigenvalue problems.
7. Special Topics
Lagrangian for charged particle moving in electric and magnetic fields.
Continuous systems: the Lagrangian Density.
Assessment methods
Method | Weight |
---|---|
Written exam | 100% |
Feedback methods
Model answers will be issued within one week of issuing each example sheet. Informal Q&A sessions will be organised to allow students to clarify any questions on the lecture material or on the model answers.
Recommended reading
Kibble, T.W.B. & Berkshire, F.H. Classical Mechanics, 5th edition (Longman)
Goldstein, H., Poole, C. & Safko, J. Classical Mechanics, 3rd edition (Addison-Wesley)
Landau, L.D. and Lifshiftz, E.M. Mechanics, 3rd edition (Pergamon Press)
Study hours
Scheduled activity hours | |
---|---|
Assessment written exam | 1.5 |
Lectures | 22 |
Independent study hours | |
---|---|
Independent study | 76.5 |
Teaching staff
Staff member | Role |
---|---|
Sean Freeman | Unit coordinator |