- UCAS course code
- F305
- UCAS institution code
- M20
Master of Physics (MPhys)
MPhys Physics
Join a physics Department of international renown that offers great choice and flexibility, leading to master's qualification.
- Typical A-level offer: A*A*A including specific subjects
- Typical contextual A-level offer: A*AA including specific subjects
- Refugee/care-experienced offer: AAA including specific subjects
- Typical International Baccalaureate offer: 38 points overall with 7,7,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,500 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please visit our undergraduate student finance pages and our Department funding pages .
Course unit details:
Electromagnetism
Unit code | PHYS20141 |
---|---|
Credit rating | 10 |
Unit level | Level 2 |
Teaching period(s) | Semester 1 |
Available as a free choice unit? | No |
Overview
Electromagnetism
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Mathematics 1 | PHYS10071 | Pre-Requisite | Compulsory |
Electricity & Magnetism | PHYS10342 | Pre-Requisite | Compulsory |
Mathematics 2 | PHYS10372 | Pre-Requisite | Compulsory |
Aims
To introduce Maxwell's equations and use them to derive properties of electromagnetic waves; to introduce simple models for the interaction of electromagnetic fields with matter.
Learning outcomes
On completion successful students will be able to:
1. Derive Maxwell's equation set from the empirical laws of electromagnetism.
2. Use the fundamental laws of electromagnetism to solve simple problems of electrostatics, magnetostatics and electromagnetic induction in a vacuum;
3. Modify Maxwell's laws to apply in the presence of materials and solve problems involving them;
4. Derive the electromagnetic boundary conditions which apply at the interface between two simple media, and to use them to solve problems involving two or more materials.
5. Explain the properties of plane electromagnetic waves in a vacuum and in simple media and to be able to derive these properties from Maxwell's equations
Syllabus
1. Mathematical Preliminaries
Revision of Vector Calculus; Dirac δ-function and point particles; Laplace’s & Poisson’s equations and their uniqueness theorem.
(2 lectures)
2. Maxwells equations in a vacuum
Continuity equation; Integral forms of Maxwell’s equations; Differential forms of Maxwell’s equations; Potential formulation; Electrostatics and magnetostatics as the time independent limit; Calculation of field configurations; Electric and magnetic dipoles; Connections between electromagnetism and special relativity.
(7 lectures)
3. Electromagnetic effects in simple materials
Conductors: mechanisms for conduction; the method of images and the motion of particles near a conductor. Dielectrics: capacitance, relative permittivity; polarization & electric susceptibility; mechanism for polarization; electrostatics in a dielectric; Interfaces between dielectrics. Magnetism: inductance & permeability; magnetization & magnetic susceptibility; diamagnetism and paramagnetism; magnetostatics. Ferromagnetism: ideal ferromagnets; hysteresis.
(8 lectures)
4. Electromagnetic waves
Maxwell’s equations in free space; Plane waves; Wave solutions for E & B fields; Poynting vector, irradiance & radiation pressure; Polarization of EM waves; Reflection of EM waves at a perfect conductor; EM waves in the presences of a current; EM waves in a dielectric.
(5 lectures)
Assessment methods
Method | Weight |
---|---|
Other | 10% |
Written exam | 90% |
10% Tutorial Work/attendance
Feedback methods
Feedback will be offered by tutors on students’ written solutions to weekly example sheets, and model answers will be issued.
Recommended reading
Grant, I.S. & Phillips, W.R. Electromagnetism (2nd ed.) (Wiley)
Griffiths, D.J. Introduction to Electrodynamics (4th ed.) (Cambridge Uni. Press)
Useful references
Bleaney, B.I. & Bleaney B. Electricity & Magnetism (3rd ed.) (Oxford Uni. Press)
Duffin, W.J. Electricity and Magnetism (4th ed.) (Duffin, previous eds. McGraw-Hill)
Jackson, J.D. Classical Electrodynamics (3rd ed.) (Wiley)
Study hours
Scheduled activity hours | |
---|---|
Assessment written exam | 1.5 |
Lectures | 22 |
Tutorials | 4 |
Independent study hours | |
---|---|
Independent study | 72.5 |
Teaching staff
Staff member | Role |
---|---|
Yang Xian | Unit coordinator |
Mark Hughes | Unit coordinator |