- UCAS course code
- H3N1
- UCAS institution code
- M20
Bachelor of Engineering (BEng)
BEng Mechanical Engineering with Management
Gain invaluable and practical skills from the one of the most targeted universities by top graduate employers (THE Graduate Market 2024).
- Typical A-level offer: A*A*A including specific subjects
- Typical contextual A-level offer: A*AA including specific subjects
- Refugee/care-experienced offer: AAA including specific subjects
- Typical International Baccalaureate offer: 38 points overall with 7,7,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £34,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .
Course unit details:
Heat Transfer
Unit code | MECH30432 |
---|---|
Credit rating | 10 |
Unit level | Level 3 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
Thermal energy exchanges occur throughout the natural environment and engineering systems. The course unit represents the first exposure of the students to Heat Transfer and seeks both to introduce them to the subject, and, as is appropriate for a Level 3 unit, to develop the subject to a relatively advanced level, at least in some areas.
Problem assignments and a hands-on laboratory offer the students the opportunity to explore elements of the subject in slightly greater depth than that covered in lectures.
The course is delivered as 24 hours of lectures, including examples classes, tutorial questions, a coursework assignment, and a laboratory.
Aims
The principal aim of the course unit is to provide students with an understanding of the three modes of single phase heat transfer (conduction, radiation, and convection).
It also aims to provide knowledge of heat exchangers and methods used for their thermal analysis.
The material has application to the analysis of thermal processes and equipment.
Syllabus
The three single phase modes of heat transfer are treated.
1. Heat conduction introduces thermal conductivity and Fourier’s Law; it then proceeds to cover one- and two-dimensional conduction in Cartesian coordinates, and also 1-D conduction in cylindrical coordinates. The latter work considers the critical radius of insulation. A link is made to later work on convection via the introduction of the heat transfer coefficient in connection with convective boundary conditions. The electrical-analogue approach is considered where appropriate. Analysis of fin heat transfer is covered in some depth. Time-dependent heat conduction is presented in the form of the lumped-heat-capacity method and Heisler/Grober charts. Coursework problems are set on this part of the syllabus.
2. Heat convection introduces Newton’s law of cooling and demonstrates how it can be used in the thermal analysis of engineering systems. This is followed by a qualitative discussion of the physical processes involved and use of dimensional analysis to identify the relevant dimensionless groups such as Nusselt. Prandtl, etc. Nusselt number correlations are then presented for forced and natural convection and their use in thermal analysis is presented through a number of examples. The concept of film temperature is also explained.
3. Heat exchanger analysis includes a presentation of the different types of heat exchangers, introduction of the concept of overall heat transfer coefficient, presentation of the log-mean-temperature difference and the effectiveness-NTU methods and their application to the thermal analysis of heat exchangers. A laboratory exercise explores this part of the syllabus and gives students the opportunity to measure the performance of different types of heat exchangers.
4. Thermal Radiation includes the nature of thermal radiation, the surface fluxes, emission of radiation, absorption and reflection, Kirchoff’s Law, radiant interchange between surfaces, the role of geometry and view factors, and radiant interchange between diffuse, uniform-radiosity surfaces, to include the electrical-analogue approach.
Laboratory: Heat Exchanger Measurements
Assessment methods
Method | Weight |
---|---|
Other | 10% |
Written exam | 80% |
Report | 10% |
Other - assessed tutorial work
Feedback methods
Exam - via script viewing
Assessed tutorial work - on individual scripts plus generic feedback
Report - given in lab session
Study hours
Scheduled activity hours | |
---|---|
Lectures | 20 |
Practical classes & workshops | 3 |
Tutorials | 4 |
Independent study hours | |
---|---|
Independent study | 73 |
Teaching staff
Staff member | Role |
---|---|
Adel Nasser | Unit coordinator |