- UCAS course code
- H402
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Aerospace Engineering
- Typical A-level offer: A*AA including specific subjects
- Typical contextual A-level offer: AAA including specific subjects
- Refugee/care-experienced offer: AAB including specific subjects
- Typical International Baccalaureate offer: 37 points overall with 7,6,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £34,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .
Course unit details:
Modelling & Simulation 3
Unit code | AERO30052 |
---|---|
Credit rating | 10 |
Unit level | Level 3 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
The students are introduced to the mathematical formulations of (1) linear elastic (structural), and (2) fluid flow (CFD) problems and their implementation into numerical schemes. Particular emphasis is placed on the Finite Element and Finite Volume Methods and the associated modelling strategies. Two detailed project exercises are carried out to support the course and highlight the importance of numerical simulations as an important, indeed, essential aid in engineering design.
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Modelling & Simulation 3 | AERO30052 | Pre-Requisite | Compulsory |
Aims
Syllabus
The Finite Element Method, as applied to structural problems, includes: formulations and setting up of system equations for one-, two-, and three-dimensional elasticity problems, their assembly, solution, and post-processing. The associated project requires the analysis of a plate with central hole using ABAQUS: studying the effect of element type, element density on computed values of deflections and stresses; convergent curves; stress discontinuities.
Application of the Finite Volume Method is concerned with the governing equations of thermo-fluids and numerical discretization of those transport equations; there is a brief treatment of turbulence modelling. The project involves turbulent flow and heat transfer in a mixing elbow. CFD solution and post-processing is undertaken using the ANSYS-FLUENT package.
Assessment methods
Method | Weight |
---|---|
Written exam | 80% |
Report | 20% |
Feedback methods
Coursework feedback on two simulation laboratories is provided individually on the marked reports. Collective feedback is also given during the lecture period when marked reports are handed back.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 24 |
Practical classes & workshops | 6 |
Independent study hours | |
---|---|
Independent study | 70 |
Teaching staff
Staff member | Role |
---|---|
Timothy Craft | Unit coordinator |