- UCAS course code
- H402
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Aerospace Engineering
- Typical A-level offer: A*AA including specific subjects
- Typical contextual A-level offer: AAA including specific subjects
- Refugee/care-experienced offer: AAB including specific subjects
- Typical International Baccalaureate offer: 37 points overall with 7,6,6 at HL, including specific requirements
Course unit details:
Materials 1 (Aerospace)
Unit code | MECH10002 |
---|---|
Credit rating | 10 |
Unit level | Level 1 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
Every engineering application needs to have some appreciation of the materials that are employed to achieve functionality and durability requirements. This course serves as a starting point to develop an engineer’s ability to select a material based on cost and performance, understand limitations and how properties change in service and the ability to critically assess new materials for a given application.
Aims
To provide an introduction to materials engineering and materials science.
To introduce the primary classes of materials, and to develop an understanding of types of interatomic, crystal and molecular bonding in engineering materials and their influence on mechanical properties.
To develop an understanding of the modes of failure for different classes of materials.
To introduce brittle fracture, and to develop an understanding of the ways in which a flaw within a material can influence its response to loading.
Syllabus
Introduction to Materials (~ 3 lectures): Introduction to materials, the importance of understanding material behaviour, examples for which the performance of engineering systems is limited by the performance of materials. Mechanical properties of materials. Interatomic bonding in materials. Students should be able to understand: elasticity, plasticity and the difference between strength and toughness. Students should also be able to appreciate the main types of materials (metals, ceramics, polymers and composites) and the relationship between processing, structure, properties and performance.
Metals and Alloys (~ 9 lectures): Crystal structure in metals, phase diagrams, solidification, plasticity in metals, strengthening mechanisms in metals, the influence of temperature on mechanical properties, an introduction to steels, an introduction to aluminium alloys. Students should be able to relate the main crystal types and their geometry to properties, understand the effects on microstructure of metals with temperature using binary phase diagrams, and, be able to describe strengthening mechanisms in alloys. They should also be able to describe steel microstructure and properties, as well as the formation of metastable phases. For aluminium alloys, students should be able to understand strengthening mechanisms and ageing processes.
Degradation Mechanisms (~ 2 lectures): An introduction to fatigue and creep deformation. Mechanisms for the accumulation of fatigue and creep damage within a material. Introduction to residual stresses, the role that residual stresses can play in affecting fatigue life. Students should be able to define fatigue and the effects of a mean stress, and both the definition of what creep is and conditions where it becomes engineering concern.
Fracture Mechanics (~ 3 lectures): Geometric stress concentration, Griffith’s criterion for crack propagation, the importance of toughness in engineering design, the stress intensity factor, ductile-to-brittle transitions. Students should understand the difference between ductile and brittle transformation, the role of defects and how to calculate a critical crack length given a monotonic far-field load.
Polymer Materials (~ 3 lectures): Bonding in polymer materials, amorphous and crystalline polymers, viscoelasticity in polymers, the glass transition temperature, thermoplastics and thermosets. Students should be able to define the two different types of polymers and their properties, explain the concept of a glass transition temperature and how mechanical properties vary with loading rates.
Fibre Reinforced Composites (~ 2 lectures): General features of composite materials, classification of composites, anisotropy, failure modes in tension and compression, toughness in composite materials. Students should appreciate anisotropy of composite materials including identifying directions of max/min stiffness, failure modes for composite materials and how the toughness can be improved.
Assessment methods
Method | Weight |
---|---|
Other | 5% |
Written exam | 80% |
Report | 15% |
Other - online quiz
Feedback methods
Online quiz - Rubric, within 2 weeks
Report - Rubric, within 2 weeks
Exam - via script viewing
Study hours
Scheduled activity hours | |
---|---|
eAssessment | 2 |
Lectures | 20 |
Project supervision | 5 |
Tutorials | 5 |
Independent study hours | |
---|---|
Independent study | 68 |
Teaching staff
Staff member | Role |
---|---|
Matthew Roy | Unit coordinator |