- UCAS course code
- H801
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Chemical Engineering
A chemical engineering master's degree from Manchester opens up a world of opportunity.
- Typical A-level offer: AAA including specific subjects
- Typical contextual A-level offer: AAB including specific subjects
- Refugee/care-experienced offer: ABB including specific subjects
- Typical International Baccalaureate offer: 36 points overall with 6,6,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
At The University of Manchester we're committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .
Course unit details:
Process Integration
Unit code | CHEN20082 |
---|---|
Credit rating | 10 |
Unit level | Level 2 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
The use of energy to produce products is fundamental in the chemical process industries. Energy sources such as gas, oil, and coal are becoming increasingly costly, and also lead to environmental problems. Minimising the use of external heating and cooling sources and making the most efficient use of available energy is a cornerstone in the design of chemical processes.
This unit will briefly examine the various types of heat exchanger devices available to transfer heat between streams in chemical processes, and evaluate factors that contribute to the overall specification and design of these heat exchange devices, including heat transfer coefficients, pressure drops, and temperature differences.
The unit will also evaluate opportunities to minimise and target energy use prior to the detailed design of the energy exchange (or heat exchanger) network. Such targets can be used to scope and screen many design options quickly and effectively without having to carry out the designs. Methodologies, including the well established Pinch Analysis, are developed and evaluated for both new design and retrofit (existing design) scenarios. Once design options have been chosen using targets (both energy and capital), then systematic procedures allow the targets to be achieved in practice. The external heating and cooling requirements of the chemical process can also be evaluated and included in this design. The use and design of fired heaters in providing external heating to chemical processes will be considered in some detail.
Aims
The unit aims to:
Examine, understand, and evaluate the use of heat exchangers, including networks of heat exchangers, within chemical processes in order to maximise heat recovery, and with regards to operating and capital costs. The unit will evaluate techniques to determine the effective use of energy within chemical processes, maximising heat recovery and minimising the use of external heating and cooling utilities. Techniques will be developed for the design of networks of heat exchangers within chemical processes that meet targeted minimum energy requirements. Additional heating and cooling requirements of chemical processes will be evaluated, and suitable types of hot and cold utilities required to meet this requirement will be appraised. Methods of integrating hot and cold utilities into chemical processes will be assessed. Capital costs of heat recovery will be examined with the use of area targeting approaches. Detailed design of fired heaters will be examined.
Learning outcomes
ILO 1: Assess the sources and sinks of energy contained in chemical processes and the significance of effective integration to achieve energy efficiency
ILO 2: Develop, evaluate, and demonstrate the targeting methodologies available to heat integrate chemical processes in order to maximise heat recovery, minimise externally sourced energy use, and improve energy efficiency
ILO 3: Appraise and assess the implications of the process pinch on heat recovery and external energy use, and the heat integration potential on the design of heat exchanger networks
ILO 4: Develop, evaluate, and demonstrate methods of heat exchanger network design in order to achieve maximum targeted heat recovery and minimum externally sourced energy use in chemical processes
ILO 5: Evaluate the sources of heating and cooling supply utilities, and demonstrate and assess methods of heating and cooling supply utilities integration into chemical processes and heat exchanger networks
ILO 6: Examine and evaluate capital cost implications of heat recovery by area targeting techniques
ILO 7: Assess and demonstrate models of fired heater designs for the production of high temperature heat sources for chemical processes
Teaching and learning methods
Lectures provide fundamental aspects supporting the critical learning of the module and will be delivered as pre-recorded asynchronous short videos via our virtual learning environment.
Synchronous sessions will support the lecture material with Q&A and problem-solving sessions where you can apply the new concepts. Surgery hours are also available for drop-in support.
Students are expected to expand the concepts presented in the session and online by additional reading (suggested in the Online Reading List) in order to consolidate their learning process and further stimulate their interest to the module.
Study budget:
- Core Learning Material (e.g. recorded lectures, problem solving sessions): 24 hours
- Self-Guided Work (e.g. continuous assessment, extra problems, reading): 44 hours
- Exam Style Assessment Revision and Preparation: 32 hours
Assessment methods
Assessment Types | Total Weighting |
Continuous assessment | 30% |
Exam style assessments | 70% |
Please note that the exam style assessments weighting may be split over midterm and end of semester exams.
Feedback methods
Feedback on problems and examples, feedback on coursework and exams, and model answers will also be provided through the virtual learning environment. A discussion board provides an opportunity to discuss topics related to the material presented in the module.
Recommended reading
Reading lists are accessible through the Blackboard system linked to the library catalogue.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 24 |
Independent study hours | |
---|---|
Independent study | 76 |
Teaching staff
Staff member | Role |
---|---|
Salman Shahid | Unit coordinator |
Simon Perry | Unit coordinator |