Apply through UCAS
- UCAS course code
- J500
- UCAS institution code
- M20
Bachelor of Science (BSc)
BSc Materials Science and Engineering
Material scientists tackle some of the planet's greatest challenges and help shape the future of our world.
- Typical A-level offer: AAB including specific subjects
- Typical contextual A-level offer: ABB including specific subjects
- Refugee/care-experienced offer: BBB including specific subjects
- Typical International Baccalaureate offer: 35 points overall with 6,6,5 at HL, including specific requirements
Course unit details:
Functional Materials & Devices
Unit code | MATS31501 |
---|---|
Credit rating | 10 |
Unit level | Level 6 |
Teaching period(s) | Semester 1 |
Available as a free choice unit? | No |
Overview
Functional materials are at the heart of a wide range of consumer and industrial electronic systems, including communications, sensors, control and energy management. The microstructural and compositional variation in these materials has a dramatic impact on their electrical and mechanical properties.
Aims
The course unit aims to:
- Explain the principles underlying the operation of oxide-based functional ceramics in the form of bulk, thin-film, particulate and composite materials;
- Discuss the relationships between chemical composition, crystal structure, microstructure and functional properties;
- Identify the material characteristics required for a variety of applications and environments.
- Devise strategies to optimise the performance of functional ceramics. Correlate different types of functional properties with the underlying mechanisms and processing methods.
Learning outcomes
A greater depth of the learning outcomes will be covered in the following sections:
- Knowledge and understanding
- Intellectual skills
- Practical skills
- Transferable skills and personal qualities
Teaching and learning methods
- Pre-recorded video lectures,
- Live online lectures,
- Formative assessment in the form of online quizzes,
- Recommended textbooks and scientific papers,
- Past exam papers,
- Coursework/tutorials,
- Electronic supporting information (Blackboard).
Knowledge and understanding
- K1: demonstrate an understanding of the composition-structure-property relationships in polycrystalline ferroelectrics.
- K2: describe the main groups of conventional piezoelectric ceramics; identify emerging single-phase and composite materials and their characteristic properties.
- K3: explain how structural phase transformations in ferroelectrics can be exploited in the development of new and improved materials.
- K4: Discuss principles of operation of solid oxide fuel cells and ceramic sensors (Thermistors, Varistors and Gas sensors). In this context, describe the effect of chemical composition, crystal structure and microstructure on their functional properties.
- K5: Apply the above knowledge of fuel cells and ceramic sensors to estimate their basic operational parameters.
- K6: Evaluate factors limiting the performance of a particular fuel cell or ceramic sensor and suggest measures of performance optimisation.
Intellectual skills
- I1: devise strategies to optimise the performance of functional ceramics with respect to specific applications.
- I2: correlate different types of functional properties with the underlying mechanisms and processing methods.
Transferable skills and personal qualities
- T1: analytical capability
- T2: problem-solving skills
Assessment methods
Method | Weight |
---|---|
Written exam | 70% |
Written assignment (inc essay) | 30% |
Feedback methods
Written and verbal
Recommended reading
- Electroceramics: Materials, properties, applications, 2nd edition, A. J. Moulson and J.M. Herbert, John Wiley & Sons, Chichester, 2003.
- Electrical properties of materials, 8th edition, L. Solymar and D. Walsh, Oxford University Press, Oxford, 2009.
- Semiconductor devices: Physics and technology, 3rd edition, S. M. Sze and M.-K. Lee, John Wiley & Sons, Chichester, 2012.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 20 |
Practical classes & workshops | 6 |
Tutorials | 8 |
Independent study hours | |
---|---|
Independent study | 66 |
Teaching staff
Staff member | Role |
---|---|
Andrey Kretinin | Unit coordinator |