Apply through UCAS
- UCAS course code
- F200
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Materials Science and Engineering with Metallurgy
If you think your future lies in metallurgy, then join us and study advanced alloys, which will enable you to change the world.
- Typical A-level offer: AAA including specific subjects
- Typical contextual A-level offer: AAB including specific subjects
- Refugee/care-experienced offer: ABB including specific subjects
- Typical International Baccalaureate offer: 36 points overall with 6,6,6 at HL, including specific requirements
Course unit details:
Engineering Alloys in Service
Unit code | MATS24102 |
---|---|
Credit rating | 10 |
Unit level | Level 5 |
Teaching period(s) | Semester 2 |
Offered by | Department of Materials |
Available as a free choice unit? | No |
Overview
Case studies in the transport and power industry; e.g. weight reduction strategies in future automotive designs, performance vs. cost; economics of corrosion prevention in nuclear power generation.
Aims
The unit aims to:
- Demonstrate the ways that the metallurgical principles can be used to engineer the microstructure of metallic alloys in order to control their mechanical performance and degradation in service; through the use of case studies.
- Introduce the industrial application of materials engineering by using examples to illustrate the requirement to balance performance against cost, environmental impact and component lifetime, in commercial products.
Learning outcomes
A greater depth of the learning outcomes will be covered in the following sections:
- Knowledge and understanding
- Intellectual skills
- Practical skills
- Transferable skills and personal qualities
Teaching and learning methods
Lectures, group tutorials (problem sessions), recommended textbooks, web resources, past exam papers, Pod casts, web-based self-evaluation and supporting information (Blackboard), peer-assisted study sessions (PASS).
Knowledge and understanding
- Ability to relate the economic and environmental context for materials engineering in product development.
- Basic knowledge to apply the physical principles (e.g. thermodynamics, kinetics, mechanical behaviour) of the discipline to engineer microstructures for optimisation of performance.
- Identify the principles of microstructure control in casting and thermomechanical processing.
- Outline skills to employ the basic principles involved in design for high temperature including creep and oxidation resistance.
- Ability to apply basic thermodynamics and kinetics to evaluate corrosion and oxidation.
- Relate the scientific and engineering related knowledge on the application of surface engineering to improve materials performance, in service-life, and the control of corrosion.
Intellectual skills
- Show improved logical reasoning, problem solving and ability in applied mathematics.
- Ability to identify the effect of changing the chemistry and microstructure/architecture of a material on its properties and performance in service.
Practical skills
- Ability to apply the laboratory skills that require for corrosion testing and related experiments.
Transferable skills and personal qualities
- Skills to convert word problems into equations and numerical answers.
- Recognize the metallurgical related concepts to determine best technical options.
Assessment methods
Method | Weight |
---|---|
Written exam | 70% |
Written assignment (inc essay) | 30% |
Feedback methods
Verbal and written
Recommended reading
- “Phase transformations in Metals and Alloys”, D.A. Porter, K.E. Easterling, M. Sherif, Pub. Chapman and Hall, 2009.
- Materials Science and Engineering - An Introduction, W. D. Callister, D. G. Rethwisch, Pub. Wiley, 2010.
- Shreir's corrosion, R. A. Cottis, M. Graham, R. Lindsay, L. S.B., J. A. Richardson, D. Scantlebury and H. Stott, eds., Elsevier, Amsterdam, 2009.
- Corrosion Engineering, Mars G. Fontana, Tata McGraw-Hill, 2005.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 20 |
Independent study hours | |
---|---|
Independent study | 80 |
Teaching staff
Staff member | Role |
---|---|
Wajira Mirihanage | Unit coordinator |