- UCAS course code
- GG41
- UCAS institution code
- M20
Bachelor of Science (BSc)
BSc Computer Science and Mathematics with Industrial Experience
- Typical A-level offer: A*A*A including specific subjects
- Typical contextual A-level offer: AAA including specific subjects
- Refugee/care-experienced offer: AAB including specific subjects
- Typical International Baccalaureate offer: 38 points overall with 7,7,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please visit our undergraduate student finance pages .
Course unit details:
Problem Solving by Computer
Unit code | MATH36031 |
---|---|
Credit rating | 10 |
Unit level | Level 3 |
Teaching period(s) | Semester 1 |
Offered by | Department of Mathematics |
Available as a free choice unit? | No |
Overview
This module is concerned with using a modern computer software package for solving mathematical problems and hence it involves a reasonable amount of computer programming. The student will be given a thorough introduction to the capabilities of the state of the art software package MATLAB, covering numeric, symbolic (with the Symbolic Math Toolbox) and graphical features. Although MATLAB is the chosen course software, the emphasis will be given to principles that are not specific to any particular package. Basic principles of technical writing will also be taught, and the student will apply these to the written projects, which must be produced using a wordprocessing/typesetting package.
Aims
To develop skills in translating mathematical ideas into MATLAB programs, thereby using the computer as a tool to investigate and solve mathematical problems.
Learning outcomes
On successful completion of the course unit, students will be able to:
- apply and extend built-in functions in MATLAB to solve mathematical problems in numerically or symbollically,
- formulate practical problems given in the project description into mathematical ones and analyse them using basic tools from calculus, linear algebra, probability and differential equations.
- construct algorithms based on built-in functions from MATLAB to solve the mathematical problems,
- present the results returned from MATLAB graphically (if applicable) and interpret the results,
- apply typesetting packages (ideally Latex) to express their idea and report the results in precise and concise language.
Syllabus
1.General Introduction: Brief history of mathematical computing. Mathematical software packages, programming languages.
2.Programming in MATLAB: Essentials of MATLAB; vectors and matrices, colon notation, numeric output, graphics, control structures and logical tests. MATLAB functions. Symbolic and high precision computations.
3.Projects:Three projects will be set on mathematical topics, often with applications. No special background knowledge is required and the relevant theory will be covered in lectures. Marks will be awarded for mathematical content and correctness, use of MATLAB, and technical writing and presentation.
4.Laboratory Work: Approximately half of the total of 36 contact hours will be spent on lectures and the remainder on supervised computer laboratory work on the projects. Students should expect to spend more than the allocated class-time on the computer to produce their projects.
Assessment methods
- Project 1 - weighting 30%
- Project 2 - weighting 35%
- Project 3 - weighting 35%
Feedback methods
Feedback tutorials will provide an opportunity for students' work to be discussed and provide feedback on their understanding. Coursework or in-class tests (where applicable) also provide an opportunity for students to receive feedback. Students can also get feedback on their understanding directly from the lecturer, for example during the lecturer's office hour.
Recommended reading
Essential: Desmond J. Higham and Nicholas J. Higham, MATLAB Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2016.
Core: Nicholas J. Higham. Handbook of Writing for the Mathematical Science. Society of Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 1998.
Recommended: Hunt, Brian R., Ronald L. Lipsman, and Jonathan M. Rosenberg. A guide to MATLAB: for beginners and experienced users. Cambridge university press, 2014.
Recommended: Attaway, Stormy. Matlab: a practical introduction to programming and problem solving. Butterworth-Heinemann, 2013.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 11 |
Tutorials | 11 |
Independent study hours | |
---|---|
Independent study | 78 |
Teaching staff
Staff member | Role |
---|---|
Jitesh Gajjar | Unit coordinator |