Master of Physics (MPhys)

MPhys Physics

Join a physics Department of international renown that offers great choice and flexibility, leading to master's qualification.

  • Duration: 4 years
  • Year of entry: 2025
  • UCAS course code: F305 / Institution code: M20
  • Key features:
  • Scholarships available
  • Accredited course

Full entry requirementsHow to apply

Fees and funding

Fees

Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,500 per annum. For general information please see the undergraduate finance pages.

Policy on additional costs

All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).

Scholarships/sponsorships

The University of Manchester is committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.

For information about scholarships and bursaries please visit our undergraduate student finance pages and our Department funding pages .

Course unit details:
Superconductors and Superfluids

Course unit fact file
Unit code PHYS40451
Credit rating 10
Unit level Level 4
Teaching period(s) Semester 1
Available as a free choice unit? No

Overview

Superconductors and Superfluids

Pre/co-requisites

Unit title Unit code Requirement type Description
Statistical Mechanics PHYS20352 Pre-Requisite Compulsory
Applications of Quantum Physics PHYS30101 Pre-Requisite Compulsory
Condensed Matter Physics PHYS30051 Pre-Requisite Compulsory

Aims

To describe and explain the unique properties of superconductors and superfluids and to show how they exhibit quantum mechanical phenomena on a macroscopic scale.

Learning outcomes

On completion successful students will be able to:
 
1. Describe and explain the properties of superfluids and superconductors.
2. Use the concepts of ground state, excitations and quantization of velocity circulation and
    magnetic flux.
3. Explain the two-fluid model and apply the equations of superfluid hydrodynamics
4. Explain the electromagnetic properties of superconductors including the Meissner effect and
    the distinction between type I and type II behaviour, including the vortex state.
5. Describe and explain the applications of superconductors.
6. Use Ginzburg-Landau theory and the fundamentals of BCS theory.
7. Explain the DC and RF Josephson effects and use the Josephson equations.

Syllabus

1. Weakly interacting Bose gases, Bose-Einstein condensation, ground state and excitations.

(2 lectures)

2. Liquid 4He and 3He, properties of superfluid 4He, macroscopic wave function, quantized circulation and vortices, excitations, Landau criterion for superfluidity, two-fluid hydrodynamics, first and second sound.

(6 lectures)

3. Microscopic theory of superconductivity, Cooper problem, elements of BCS theory, excitations, thermodynamic properties.

(6 lectures)

4. Superconductors, persistent current and Meissner effect, evidence for energy gap, London  electrodynamics and penetration depth, thermodynamics and critical field.

(4 lectures)

5. Ginzburg-Landau theory and coherence length, type I and type II behaviour, flux quantization, vortex state, flux pinning and applications.

(4 lectures)

6. Weakly coupled superconductors, Josephson effect, dc SQUID and applications.

(2 lectures)

Assessment methods

Method Weight
Written exam 100%

Feedback methods

Feedback will be available on students' comments on examples sheets, and model answers will be issued. 

Recommended reading

Tilley, D.R. & Tilley, J. Superfluidity and Superconductivity, (Bristol: Hilger 1990);

Annett, J.F. Superconductivity, Superfluids and Condensates (Oxford 2004);

Schmidt, V.V. The Physics of Superconductors:  Introduction to Fundamentals and Applications, (Springer 1997);

 

Supplementary reading will be suggested throughout the course

 

Study hours

Scheduled activity hours
Assessment written exam 1.5
Lectures 24
Independent study hours
Independent study 74.5

Teaching staff

Staff member Role
Andrei Golov Unit coordinator

Return to course details