- UCAS course code
- H801
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Chemical Engineering
A chemical engineering master's degree from Manchester opens up a world of opportunity.
- Typical A-level offer: AAA including specific subjects
- Typical contextual A-level offer: AAB including specific subjects
- Refugee/care-experienced offer: ABB including specific subjects
- Typical International Baccalaureate offer: 36 points overall with 6,6,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
At The University of Manchester we're committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .
Course unit details:
Distillation & Absorption
Unit code | CHEN20072 |
---|---|
Credit rating | 10 |
Unit level | Level 2 |
Teaching period(s) | Semester 2 |
Available as a free choice unit? | No |
Overview
Equilibrium stages: Conceptual characterisation of binary separations.
Batch distillation: Rayleigh distillation and batch rectification for ideal mixtures.
Continuous distillation: Flash and continuous binary distillation, McCabe-Thiele construction, total and partial reboilers and condensers, plate efficiencies.
Continuous absorption: Binary vapour-liquid absorption in column, mass transfer analysis, design using theoretical units.
Column hydraulics: Characteristics of different types of plates and packaging, flooding, flooding correlations and sizing of columns, column control strategies.
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Process Engineering Fundamentals | CHEN10041 | Pre-Requisite | Compulsory |
Momentum, Heat & Mass Transfer | CHEN20112 | Co-Requisite | Compulsory |
Aims
The unit aims to:
Develop a basic competence in making equilibrium, mass transfer and hydraulic calculations for binary distillation and absorption.
Learning outcomes
ILO 1: Interpret, arrange and gather equilibrium data (VLE, K values) using various tabulated and graphical formats.
ILO 2: Apply equilibrium data and mass balances to construct models for batch and continuous separation systems: Rayleigh distillation, batch rectification, flash distillation, multiple stage distillation and absorption.
ILO 3: Calculate preliminary design parameters (minimum number of theoretical stages, minimum reflux ratio, feed stage) for a multi stage distillation unit using the McCabe-Thiele graphical method.
ILO 4: Calculate preliminary design parameters (minimum number of theoretical stages, minimum stripping/scrubbing carrier flow rates) for a multi stage absorption unit using stepping or theoretical unit analysis.
ILO 5: Distinguish the difference between VLE and absorption/desorption, and translate distillation theory to plate absorption columns.
ILO 6: Recognize the key effects of fluid dynamics and flow within a distillation or absorption column.
Teaching and learning methods
Lectures provide fundamental aspects supporting the critical learning of the module and will be delivered as pre-recorded asynchronous short videos via our virtual learning environment.
Synchronous sessions will support the lecture material with Q&A and problem-solving sessions where you can apply the new concepts. Surgery hours are also available for drop-in support.
Feedback on problems and examples, feedback on coursework and exams, and model answers will also be provided through the virtual learning environment. A discussion board provides an opportunity to discuss topics related to the material presented in the module.
Students are expected to expand the concepts presented in the session and online by additional reading (suggested in the Online Reading List) in order to consolidate their learning process and further stimulate their interest to the module.
Study budget:
- Core Learning Material (e.g. recorded lectures, problem solving sessions): 24 hours
- Self-Guided Work (e.g. continuous assessment, extra problems, reading) : 44 hours
- Exam Style Assessment Revision and Preparation: 32 hours
Assessment methods
Assessment Types | Total Weighting |
Continuous assessment | 30% |
Final Exam | 70% |
Please note that the exam style assessments weighting may be split over midterm and end of semester exams.
Recommended reading
Reading lists are accessible through the Blackboard system linked to the library catalogue.
Teaching staff
Staff member | Role |
---|---|
Peter Martin | Unit coordinator |
Rosa Cuellar Franca | Unit coordinator |