- UCAS course code
- H801
- UCAS institution code
- M20
Master of Engineering (MEng)
MEng Chemical Engineering
A chemical engineering master's degree from Manchester opens up a world of opportunity.
- Typical A-level offer: AAA including specific subjects
- Typical contextual A-level offer: AAB including specific subjects
- Refugee/care-experienced offer: ABB including specific subjects
- Typical International Baccalaureate offer: 36 points overall with 6,6,6 at HL, including specific requirements
Fees and funding
Fees
Tuition fees for home students commencing their studies in September 2025 will be £9,535 per annum (subject to Parliamentary approval). Tuition fees for international students will be £36,000 per annum. For general information please see the undergraduate finance pages.
Policy on additional costs
All students should normally be able to complete their programme of study without incurring additional study costs over and above the tuition fee for that programme. Any unavoidable additional compulsory costs totalling more than 1% of the annual home undergraduate fee per annum, regardless of whether the programme in question is undergraduate or postgraduate taught, will be made clear to you at the point of application. Further information can be found in the University's Policy on additional costs incurred by students on undergraduate and postgraduate taught programmes (PDF document, 91KB).
Scholarships/sponsorships
At The University of Manchester we're committed to attracting and supporting the very best students. We have a focus on nurturing talent and ability and we want to make sure that you have the opportunity to study here, regardless of your financial circumstances.
For information about scholarships and bursaries please see our undergraduate fees pages and check the Department's funding pages .
Course unit details:
Catalytic Reaction Engineering
Unit code | CHEN30051 |
---|---|
Credit rating | 10 |
Unit level | Level 3 |
Available as a free choice unit? | No |
Overview
The unit consist out of eight main topics:
1. Introduction to heterogeneous reactions: in this topic the main principles of heterogeneous reaction systems are introduced. The focus will be on how to describe the basic steps for a solid-catalysed reaction system, the contacting patterns for multiphase systems, the rate limiting steps, and applying the concepts of film theory for multiphase systems.
2. Kinetic models for heterogeneous reactions: in this topic the methodology of deriving a rate law and mechanism and rate limiting step for solid-catalysed reaction systems are presented. The focus will be on how to develop adsorption, surface-reaction, and desorption-models to describe the overall rate equations for a solid-catalysed reaction.
3. Internal mass transfer: in this topic the internal diffusion and reaction in catalyst pellets are introduced. The focus will be on how to develop pore models for analysing diffusion and reaction and show how the Thiele Modulus affects the rate of reaction in heterogeneous catalytic reactions.
4. External mass transfer: in this topic the fundamentals of external diffusion and molar flux are introduced and designing reactors when the reactions are limited by mass transfer are discussed. The focus will be to incorporate Fick’s first law into the mole balances to model diffusion through a stagnant film to a reacting surface.
5. Solid-fluid reactor design - Packed bed reactors: in this topic the basic principles of solid-fluid packed bed reactors are discussed and the factors that influence the choice and performance of these reactors are identified. The focus will be on how to account for the non-isothermal behaviour of packed beds.
6. Solid-fluid reactor design - Fluidized bed reactors: in this topic the basic principles of solid-fluid fluidized bed reactors are discussed, and various types and applications of these reactors are introduced. The focus will be on how to account for the non-ideal flow of gas in fluidized beds using different flow models.
7. Fluid-fluid reactor design: in this topic the main principles of heterogeneous fluid-fluid reaction system are introduced. The focus will be on how to describe the overall rate expression, equilibrium solubility and contact pattern for a fluid-fluid reactions. Thereafter, the focus will be on how to design a fluid-fluid reactor contactor (tank and tower).
8. Reactor design with software packages: in this topic the concepts and methodology use to design heterogeneous reactors using computer based software packages are introduced. The focus will be on how to design a complex multiphase reactor system using simulation and modeling software packages.
Pre/co-requisites
Unit title | Unit code | Requirement type | Description |
---|---|---|---|
Chemical Reactor Design | CHEN20141 | Pre-Requisite | Compulsory |
Aims
The unit aims to:
develop an understanding of the kinetics and design of chemical reactors for different types of heterogeneous systems.
Learning outcomes
ILO 1.Describe the rate steps and overall rate equation for heterogeneous reaction systems.
ILO 2.Develop mathematical expressions to describe the behaviour of different types of heterogeneous and multiphase reactors (such as catalytic packed bed reactor, fluidized bed reactor, and slurry reactor).
ILO 3.Evaluate and analyse how kinetics, mass and heat transfer affect the performance of heterogeneous and multiphase reactors.
ILO 4.Apply analytical and numerical methods to determine reactor behaviour and analyse the results.
ILO 5. Design (size) heterogeneous and multiphase chemical reactors and optimise operating conditions.
Teaching and learning methods
Lecture - 24 hours
Assessment (Coursework) - 1 hour
Assessment (Exam) - 2 hours
Assessment (Revision/Preparation) - 29 hours
Independent Study - 44 hours
Assessment methods
Assessment Types | Total Weighting |
Online test | 20% |
Final exam | 80% |
Recommended reading
Reading lists are accessible through the Blackboard system linked to the library catalogue.
Study hours
Scheduled activity hours | |
---|---|
Lectures | 24 |
Independent study hours | |
---|---|
Independent study | 44 |
Teaching staff
Staff member | Role |
---|---|
Maryam Malekshahian | Unit coordinator |
Xiaolei Fan | Unit coordinator |
Carlos Avendano Jimenez | Unit coordinator |