Coronavirus information for applicants and offer-holders

We understand that prospective students and offer-holders may have concerns about the ongoing coronavirus outbreak. The University is following the advice from Universities UK, Public Health England and the Foreign and Commonwealth Office.

Read our latest coronavirus information

BEng Electrical and Electronic Engineering

Year of entry: 2021

Course unit details:
Energy Transport and Conversion

Unit code EEEN10027
Credit rating 10
Unit level Level 1
Teaching period(s) Semester 2
Offered by Department of Electrical & Electronic Engineering
Available as a free choice unit? No

Overview

Fundamentals of power conversion

- System Architectures: Review of power conversion system architectures typically used in AC-grid connected, and transport applications. Identification of the function of the different power conversion systems.

- Mechanics and Thermal Principles: Linear and angular speeds and accelerations, force, and torque. Heat sources and mechanisms, thermal networks, temperature rise and thermal management.

- Electrical Machines: DC machines are analysed. Other motor types are introduced.

- Energy: Conservation of energy, power and energy. Different forms of energy. Introduction to the main energy storage technologies for AC-grid connected power storage, and transport.

 

Fundamentals of power systems

- Demand and Generation: In which the mechanism of generation are covered, and the nature of power demand.

- AC Circuit Analysis: Building directly on the first-year circuit course, Resonance is taught to introduce ideas about energy in circuits. Phasors are reviewed and power factor correction discussed.

- Three-Phase systems: Three-phase circuits are covered, including star and delta connections and three-phase sources.

- Transmission of Electrical Energy: The requirement of balancing Demand and Generation are discussed. Techniques for calculations of power flows and voltages in networks are introduced along with what limits transmission capacity through a line. Finally the emergence of DC transmission as a technology is reviewed.

 

Pre/co-requisites

Unit title Unit code Requirement type Description
Circuit Analysis EEEN10024 Pre-Requisite Compulsory

Aims

This course unit detail provides the framework for delivery in 2020/21 and may be subject to change due to any additional Covid-19 impact.  Please see Blackboard / course unit related emails for any further updates.

The course unit aims to:

Provide an introduction to the production, storage, transmission and use of electrical energy, in both land-based, and transport applications.

 

Learning outcomes

On the successful completion of the course, students will be able to:

Developed

Assessed

ILO 1

  • Describe the basic principles of mechanics and thermal networks, DC machines, AC circuit theory and energy storage technologies, and perform basic calculations on these systems.

*

*

ILO 2

  • Describe the process of conventional and renewable electricity generation, and the matching of generation and demand.

*

*

ILO 3

  • Evaluate simple mechanical, thermal and electrical systems.

*

*

ILO 4

  • Describe the relationship between political, commercial, social and technical pressures in engineering design.

*

*

ILO 5

  • Perform calculations on mechanical, thermal, DC machine and energy storage systems, and AC circuits involving phasors, three phase systems as well as real and reactive power.

*

*

ILO 6

  • Assimilate and communicate a technical understanding of modern power systems including renewable sources of energy, and electrified forms of transport.

*

*

 

Teaching and learning methods

  Lectures with slides and lots of worked examples; two computer lab exercises; revision surgery.

Assessment methods

Method Weight
Other 30%
Written exam 70%

Lab 1 

Weighting: 10%

Lab 2 

Weighting: 10%

Marked weekly tutorials

Weighting: 10%

Recommended reading

[1] Edward Hughes, Electrical & Electronic Technology. Pearson, 2016.
[2] J. A. Harrison, An introduction to electric power systems . London (etc.): Longman, 1980.
[3] G. M. Masters, Renewable and efficient electric power systems . Hoboken, NJ: John Wiley & Sons, 2004.
[4] P. C. (Paresh C. Sen, Principles of electric machines and power electronics , 2nd ed. New York¿;: Wiley, 1997.
[5] R. A. Serway, Physics for scientists and engineers /, Tenth edition. Australia¿:: Cengage,, 2018.
[6] M. Sterner and I. Stadler, Eds., Handbook of energy storage demand, technologies, integration . Berlin: Springer, 2019.
[7] O. S. Burheim, Engineering energy storage . London, England: Academic Press, 2017.
[8] J. A. Melkebeek, Electrical machines and drives¿: fundamentals and advanced modelling . Cham, Switzerland: Springer, 2018.
[9] N. Mohan, Power electronics¿: converters, applications, and design , 3rd ed. Hoboken, NJ: John Wiley & Sons, 2003.
[10] J. A. Harrison, An introduction to electric power systems . London (etc.): Longman, 1980.
[11] G. M. Masters, Renewable and efficient electric power systems, 2nd ed. Hoboken, NJ: John Wiley & Sons Inc., 2013.
[12] E. Hughes, Electrical and Electronic Technology¿: UEL., 11th ed. Harlow: Pearson Education UK, 2012.

 

Study hours

Scheduled activity hours
Lectures 20
Practical classes & workshops 6
Tutorials 4
Independent study hours
Independent study 70

Teaching staff

Staff member Role
Cheng Zhang Unit coordinator

Return to course details